大连理工大学学术研究丛书

线性鲁棒控制的理论与计算

吴志刚 著

大连理工大学出版社

⑦ 吴志刚 2003

图书在版编目(CIP)数据

线性鲁棒控制的理论与计算 / 吴志刚著 .— 大连 : 大连 理工大学出版社 , 2003.10

大连理工大学学术研究丛书

ISBN 7-5611-2427-9

[. 线... Ⅱ. 吴... Ⅲ. 鲁棒控制 Ⅳ. TP273

中国版本图书馆 CIP 数据核字(2003)第 086240 号

大连理工大学出版社出版

地址 大连市凌水河 邮政编码:116024 电话 0411-4708842 传真 0411-4701466 邮购 0411-4707961 E-mail dutp@mail.dlptt.ln.cn URL http://www.dutp.cn 大连理工印刷有限公司印刷 大连理工大学出版社发行

幅面尺寸:140mm×203mm 字数 240千字 印张 9.375 插页:4 印数:1~3 000

2003年10月第1版 2003年10月第1次印刷

责任编辑:刘新锋 责任校对:王 纪 毕向阳 封面设计:孙宝福

定价 25.00 元

The Academic Research Series of Dalian University of Technology

Theory and Computation of Linear Robust Control

Wu Zhigang

Dalian University of Technology Press

本书由

大 连 市 人 民 政 府 大连理工大学学术著作出版基金

The published book is financed by

Dalian People's Government and Publishing Academic Works Foundation of Dalian University of Technology

序

在鲁棒控制方法中,*H*∞控制理论是比较成功的体系。*H*∞设 计方法已经用于解决航空、航天、机械、化工等诸多领域的控制问 题,应用领域的需求使得数值方法的重要性日益增加。这与"科学 计算已经同理论与实验共同构成当代科学研究三大支柱"的趋势 是一致的。

近年来,随着系统控制理论的发展,求解控制问题的算法也日 趋成熟,并出现了许多可用于解决工程实际问题的控制系统设计 软件包。但是,由于系统复杂程度和规模的增加,控制系统设计的 算法也面临着许多新的挑战。不仅仅是 H。控制问题,即使是极点 配置、LQ 控制这样相对经典的问题,其数值求解算法也有重新审 视和改进的必要,因此需要从新的角度理解和研究控制系统设计 中的计算问题。结构力学与控制理论的相互模拟为此提供了一条 新的途径。对偶变量体系的引入改变了以往弹性力学中大量运用 半逆凑合法的传统而导向理性的求解方法;反之,基于对偶变量体 系的结构力学方法也被用于求解 H。控制和滤波中的计算问题, 而且对于连续和离散系统、有限和无限时间控制问题,其求解方法 本质上是统一的,这本书的内容也反映了这一特点。现代控制理论 奠基于对偶变量体系之上,而将应用力学的方法引入到控制理论, 则可以使其中的一些基本问题的求解得到重要推进。

当代科技发展的一个突出特点是不同学科之间的相互渗透, 具备多方面良好性能指标的工程系统的设计必然需要不同领域科 研人员的合作。智能化材料、智能化结构、智能化系统就充分体现 了这一发展方向,其中控制理论与技术所起的核心作用是不言而 喻的。当然,工程系统的设计必然需要通过科学计算得到的结果。 因此本书在介绍 H_∞控制的基本理论的同时,更强调数值求解算 法,而这些算法则来源于结构力学。这对于理解不同学科之间的联 系和自觉地综合运用各学科的知识进行系统的分析和设计是有益 的。

控制理论还有分散控制、系统参数识别、自适应系统等方面的 课题。对此,学科相互间的渗透融合、新的方法论将会有更大的意 义。本书也是学科渗透和新方法论方面的产物。同时也表明在这 方面控制理论的发展还留有很大的空间。

34 7 386

2003年8月

前言

作者 1998 年 9 月到大连理工大学博士后流动站工作,在钟万 勰院士的指导下开始 H∞控制理论及控制系统设计算法等方面的 研究工作。本书就是以此期间的研究工作报告为基础加以充实和 整理完成的。

系统的鲁棒性始终是反馈控制系统设计的核心问题之一。作 为目前解决鲁棒控制问题比较完善的理论体系,*H*_∞控制理论的 实际应用还需要辅之以方便可靠的数值求解方法,以MATLAB 工具箱为代表的控制系统CAD软件中集成了诸多的算法,提供 了相当强大的控制系统分析与设计功能。但是,目前仍然有一些基 本的计算问题需要进一步研究,如复杂大系统控制问题,有限时间 控制问题等,而对已有的方法也有重新认识的必要。作者认为,研 究和解决同一个问题可以有不同的方法,而方法的不同则源于对 问题本质不同角度和程度的理解与认识,*H*_∞控制系统设计中的 计算问题也是如此。

结构力学与最优控制的模拟理论为理解与研究控制问题提供 了一条新的途径,本书以这一理论多年来的研究成果为基础,力求 发展形式统一的 H_{∞} 系统设计算法。书中分别介绍了离散系统 H_{∞} 控制和滤波问题、连续系统 H_{∞} 控制和滤波问题的基本理论,并通 过建立 H_{∞} 控制与滤波系统的最优 H_{∞} 范数、Hamilton系统特征 值、两类变量广义 Rayleigh 商三者之间的联系,阐述了 H_{∞} 优化设 计问题的新内涵。以此为基础,介绍了概念清晰、形式统一的求解 H_{∞} 设计问题的数值方法。当然,限于作者的水平,在基于新的理 论研究解决问题的过程中难免会出现一些不恰当乃至不正确的方 法和结论,在此诚恳地希望各位同行给予批评和指正。

作者希望在此表达对导师钟万勰院士真诚的感谢。作者到大 连理工大学工作以来,钟万勰院士在学术研究中不断给予作者及 时的指导和帮助,使作者能够尽快在新的领域起步。钟万勰院士审 阅了本书的初稿,并提出了许多宝贵的修改意见。作者的研究工作 还得到了钱令希院士、林家浩教授的关心和指导,在此表示诚挚的 谢意。另外,本书第九章是钟万勰院士、高强同学和作者合作的最 新研究成果,在此感谢他们同意将此作为本书的一部分。同时还要 感谢作者的导师马兴瑞教授和王本利教授,他们培养了作者从事 科学研究工作的基本素质,并始终对作者的工作给予关心和帮助。

作者的研究工作得到了中国空间技术研究院、中国博士后科 学基金的资助,本书的出版得到了大连市学术专著出版基金、大连 理工大学工程力学系以及大连理工大学学术著作出版基金的资 助,在此表示诚挚的谢意。

作者同时感谢大连理工大学博士后流动站、大连理工大学工 程力学系的各位老师、同学和朋友,作者能够顺利完成博士后期间 的研究和本书的写作,与他们对作者及家人生活上的关心和工作 上的帮助是分不开的。

吴志刚

2003 年 8 月

日	걐
н	~/\

_	
JZ.	
177	

前言

第一章 线	性鲁棒控制基础 ••••••	• 1
1.1 鲁棒	奉控制的基本问题	• 2
1.1.1	系统不确定性描述	• 2
1.1.2	控制系统的鲁棒性	• 4
1.1.3	基于 H_∞ 性能指标的控制系统设计	• 5
1.1.4	H_{∞} 系统设计中的计算问题 ····································	• 7
1.2 多望	变量线性系统	• 9
1.2.1	线性系统模型······	10
1.2.2	系统的频率响应	14
1.2.3	系统的零点和极点	15
1.2.4	系统的稳定性、可控性、可观性	17
1.2.5	系统状态观测器	20
1.2.6	信号与系统的范数·····	24
1.2.7	Lyapunov 方程	26
1.2.8	Riccati 方程 ······	28
1.3 LQ	G 控制	31
1.3.1	全信息控制	32
1.3.2	Kalman 滤波	33

1.3.3 LQG 控制 ······		34
1.4 变分法基本概念······		35
1.5 常微分方程和差分方程特征值问题		40
参考文献		43
第二章 离散系统 <i>H</i> ∞全信息控制 ······		46
2.1 离散 H_{∞} 全信息控制 ······		46
2.2 Hamilton 差分系统特征值 ····································		52
2.3 广义 Rayleigh 商		55
2.4 最优 H_{∞} 范数计算 ······		59
2.4.1 Wittrick-Williams 特征值计数公式		59
2.4.2 扩展 Wittrick-Williams 特征值计数公式	••••••	59
2.4.3 算法描述······		62
2.5 算例 ······		64
参考文献		75
第三章 离散系统 $H_{\circ\circ}$ 滤波 ····································		77
3.1 离散 H_{∞} 滤波 ······		77
3.2 最优 H_∞ 范数与 Hamilton 差分系统特征值		81
3.3 矩阵特征值及广义 Rayleigh 商		84
3.4 最优 H_{∞} 范数的计算 ······		88
3.4.1 扩展 Wittrick-Williams 特征值计数公式		88
3.4.2 算法描述		91
3.5 算例		92
参考文献	•••••	101
第四章 离散系统 H_{\circ} 输出反馈控制简介	•••••	103
4.1 时变系统输出反馈控制 ······	•••••	103
4.2 定常系统输出反馈控制	• • • • • • • • • • • • • • • • • • • •	105
4.3 延时反馈控制	•••••	107

	4.	4	即时	反馈	控制	••••	• • • • • • • • •		••••	•••••	•••••	109
	参	考	文献・	•••••	• • • • • • • •		• • • • • • • •	•••••	••••	••••	•••••	110
第	Ŧ	章	连约	卖系统	${\bf \overline{5}}\;{m H}_{\infty}{\bf \overline{5}}$	滤波			••••	••••	•••••	111
	5.	1	连续	系统	H_∞);	息波	••••••	•••••	••••	••••	•••••	111
	5.	2	Ham	ilton	微分	系统	特征值	直	••••	••••	•••••	113
		5.	2.1	Hami	lton	微分	方程的	り共轭	点	•••••	•••••	113
		5.	2.2	Rayle	eigh [亰理	••••••	•••••	••••	••••	•••••	115
	5.	3	Ham	ilton	微分	方程	特征值	直问题	离散化	•••••	•••••	117
		5.	3.1	Hami	lton	及 S	turm-l	Liouvi	lle 型微	分方程		
				离散	化…		• • • • • • • •	•••••	••••	•••••	•••••	118
		5.	3.2	混合的	能矩降	阵合	并公式	及特征	正值计数	女公式	•••••	120
		5.	3.3	混合的	能矩降	阵的	微分方	冠 …	••••	•••••	•••••	123
		5.	3.4	混合的	能矩降	阵计	算 …	•••••	••••	•••••	•••••	124
	5.	4	最优	H_{∞}	さ数さ	†算		•••••	••••		•••••	126
		5.	4.1	算法	描述	••••	• • • • • • • •	•••••	••••	•••••	•••••	127
		5.	4.2	算例	•••••		• • • • • • • •		••••	•••••	••••••	128
	5.	5	Rice	ati 微	分方	程解	的有阳	灵逃逸 :	现象 …	•••••	•••••	140
		5.	5.1	有限	逃逸纟	条件			••••	•••••	••••••	141
		5.	5.2	算例	•••••		• • • • • • • •	•••••	••••	•••••	•••••	143
		参	考文南	就	•••••		• • • • • • • • •		••••	•••••	••••••	146
第	六	章	H_{∞}	滤波征	激分フ	5程:	求解・		••••	•••••	••••••	148
	6.	1	定常	线性	系统	H_∞ i	虑波器		••••	••••	•••••	148
	6.	2	混合	能矩	阵和「	句量	的微分	方程	•••••	•••••	•••••	150
		6.	2.1	混合的	能矩降	阵及	向量·	•••••	••••	•••••	•••••	150
		6.	2.2	区段	混合的	能矩	阵计算	<u> </u>	••••	•••••	•••••	153
	6.	3	Rice	ati 微	分方	程和	滤波微	数分方:	程的精绚	細积分	•••••	156
		6.	3.1	Ricca	ti 方	程精	细积分	}	••••	•••••	••••	156

6.3.2 滤波微分方程精细积分 ················	157
6.4 算法与算例 ······	158
6.4.1 算法描述	158
6.4.2 算例 ······	160
参考文献	166
第七章 连续系统 H _∞ 状态反馈控制	168
7.1 H_{\odot} 状态反馈控制 ······	169
7.2 对偶系统	171
7.3 最优 H_{∞} 范数计算及闭环系统微分方程求解	173
7.3.1 最优 H∞范数与广义 Rayleigh 商特征值	173
7.3.2 区段混合能及区段合并 ······	175
7.3.3 最优 H_{∞} 范数计算及 Riccati 方程精细积分	177
7.3.4 闭环系统微分方程精细积分	180
7.4 算法与算例	181
7.4.1 算法描述	181
7.4.2 算例	183
参考文献	192
第八章 连续系统 H_{∞} 输出反馈控制 ····································	194
8.1 H_{\odot} 输出反馈控制 ······	195
8.1.1 输出反馈控制器存在条件	195
8.1.2 两个特殊的输出反馈控制问题	199
8.2 Riccati 微分方程解的力学意义	200
8.3 算法与算例	206
参考文献	214
第九章 分散 H_{∞} 控制与滤波 ····································	216
9.1 大系统分散 H_{∞} 控制 ·······	216
9.2 <i>H</i> _∞ 控制子系统的特征解	220

9.3 特征解的正交归一性、完备性及展开定理	224
9.4 分散控制系统最优 H_{∞} 范数计算 ····································	228
9.5 分散控制系统算例 ······	232
9.6 分散 H _∞ 滤波 ······	236
9.7 H_{∞} 滤波子系统特征解 ····································	241
9.8 分散滤波系统最优 H_{∞} 范数计算	244
9.9 分散滤波系统算例	247
参考文献	251
附录 线性系统最优跟踪问题	254
A.1 LQ 最优跟踪	254
A.2 区段混合能 ······	256
A.2.1 区段混合能的定义	256
A.2.2 区段合并公式	258
A.3 Riccati 方程与最优控制律的精细积分	259
A.3.1 η区段矩阵计算	259
A.3.2 Riccati 方程的精细积分······	262
A.3.3 向量 b (t)的精细积分 ····································	263
A.4 最优跟踪系统响应的精细积分	265
A.5 LQ 最优跟踪算例	266
A.6 H _∞ 跟踪问题	272
参考文献	277

Contents

Foreword

Preface

Chapter 1	Essentials of Linear Robust Control	• 1
1.1 Int:	roduction to Robust Control	• 2
1.1.1	Uncertainties of Systems	• 2
1.1.2	Robustness of Control Systems	• 4
1.1.3	H_∞ Control Systems Design	• 5
1.1.4	Computational Problems of H_∞ Control	• 7
1.2 Mu	ltivariable Linear Systems	• 9
1.2.1	Models of Linear Systems	10
1.2.2	Frequency Response of Systems	14
1.2.3	Zeros and Poles of Systems	15
1.2.4	Stability, Controllability and Observability	17
1.2.5	State Observers	20
1.2.6	Norms of Signals and Systems	24
1.2.7	Lyapunov Equations	26
1.2.8	Riccati Equations	28
1.3 LQ	QG Control	31
1.3.1	Full Information Control	32
1.3.2	Kalman Filtering	33
1.3.3	LQG Control	34
1.4 Th	e Calculas of Variations	35

1.5 Eigenvalues of Ordinary Differential and	
Difference Equations	40
References	43
Chapter 2 H_{∞} Full Information Control of Discrete-	
Time Systems	46
2.1 Discrete-Time H_{∞} Full Information Control	46
2.2 Eigenvalues of Hamilton Difference Systems	52
2.3 Generalized Rayleigh Quotient	55
2.4 Computation of The Optimal H_{∞} Norm	59
2.4.1 Wittrick-Williams Eigenvalues	
Count Formula	59
2.4.2 Extended Wittrick-Williams Eigenvalues	
Count Formula	59
2.4.3 Algorithm ·····	62
2.5 Examples	64
References	75
Chapter 3 H_{∞} Filtering of Discrete-Time Systems	77
3.1 H_{∞} Filtering of Discrete-Time Systems	77
3.2 The Optimal H_{∞} Norm and Eigenvalues of	
Hamilton Difference Systems	81
3.3 Generalized Matrix Eigenvalue and Generalized	
Rayleigh Quotient	84
3.4 Computation of Optimal H_{∞} Norm	88
3. 4.1 Extended Wittrick-Williams Eigenvalues	
Count Formula	88
3. 4. 2 Algorithm ·····	91
3.5 Examples	92

Ref	feren	ices ····	101
Chapter	4 <i>I</i>	H_∞ Output Feedback Control of Discrete-	
	ſ	Fime Systems	103
4.1	Out	put Feedback Control of Time	
	Vari	ant Systems	103
4.2	Out	put Feedback Control of Time	
	Inva	riant Systems	105
4.3	Dela	yed Feedback Control	107
4.4	Inst	antaneous Feedback Control	109
Ref	feren	ices ····	110
Chapter	5 I	H_{∞} Filtering of Continuous-Time Systems \cdots	111
5.1	H_{∞}	Filtering of Continuous-Time Systems	111
5.2	Eige	envalues of Hamilton Differential Systems	113
5.2	2.1	Conjugate Points of Hamilton Differential	
		Equations	113
5.2	2.2	Rayleigh's Principle	115
5.3	Disc	retization of Eigenvalue Problems of Hamilton	
	Diffe	erential Equations	117
5.3	3.1	Discretization of Hamilton and Sturm-Liouville	
		Differential Equations	118
5.3	3 . 2	Merging of Mixed Energy Matrices and	
		Eigenvalues Count	120
5.3	3.3	Differential Equations of Mixed	
		Energy Matrices	123
5.3	8.4	Computation of Mixed Energy Matrices	124
5.4 C	Comj	putation of The Optimal H_∞ Norm	126
5.4	. 1	Algorithm	127

• 13 •

5. 4. 2 Examples	128
5.5 Finite Escape Phenomena of Riccati Differential	
Equations	140
5. 5. 1 Conditions of Finite Escape	141
5.5.2 Examples ·····	143
References	146
Chapter 6 Precise Integration of H_{∞} Filtering	
Equations	148
6.1 H_{∞} Filters of Time Invariant Systems	148
6.2 Differential Equations of Mixed Energy Matrices	
and Vectors	150
6.2.1 Mixed Energy Matrices and Vectors	150
6.2.2 Precise Integration of Mixed	
Energy Matrices	153
6.3 Precise Integration of Riccati Differential	
Equations and Filtering Equations	156
6.3.1 Precise Integration of Riccati Equations	156
6.3.2 Precise Integration of Filtering Equations	157
6.4 Algorithm and Examples	158
6.4.1 Algorithm	158
6.4.2 Examples	160
References	166
Chapter 7 H_{∞} State Feedback Control of Continuous-	
Time Systems	168
7.1 H_{∞} State Feedback Control	169
7.2 Adjoint Systems	171
7.3 Computation of The Optimal H_{∞} Norm and	

	Integration of Systems State Equations	173
7.3	3.1 The Optimal H_∞ Norm and Eigenvalues of	
	Generalized Rayleigh Quotient	173
7.3	8.2 Mixed Energy and Intervals Merging	175
7.3	3.3 Computation of The Optimal H_∞ Norm and	
	Precise Integration of Riccati Equations	177
7.3	8.4 Precise Integration of Closed Loop Systems	
	State Equations	180
7.4	Algorithm and Examples	181
7.4	.1 Algorithm	181
7.4	1.2 Examples	183
Ref	ferences	192
Chapter	8 H_{∞} Output Feedback Control of Continuous-	
	Time Systems	194
8.1	H_{∞} Output Feedback Control \cdots	195
8.1	.1 Existence of Output Feedback Controllers	195
8.1	. 2 Two Special Cases of Output Feedback	
	Control	199
8.2	Explanations of Solutions of Riccati Equations in	
	Terms of Structural Mechanics	200
8.3	Examples	206
Ref	ferences	214
Chapter	9 Decentralized H_{∞} Control and Filtering	216
9.1	Decentralized H_∞ Control of Large	
	Scale Systems	216
9.2	Eigensolutions of Subsystems H_∞ Control	220
9.3	Ortho-normalized Eigensolutions, Completness	

and the Expansion Theorem	224
9.4 Optimal H_{∞} Norm Computation for Decentralized	
Control Systems	228
9.5 Examples of Decentralized Control	232
9.6 Decentralized H_{∞} Filtering	236
9.7 Eigensolutions of Subsystems H_{∞} Filtering	241
9.8 Optimal H_{∞} Norm Computation for Decentralized	
Filtering Systems	244
9.9 Examples of Decentralized Filtering	247
References	251
Appendix Optimal Tracking of Linear Systems	254
A.1 LQ Optimal Tracking	254
A. 2 Mixed Energy of Intervals	256
A. 2.1 Mixed Energy of Intervals	256
A. 2. 2 Merging Equations of Intervals	258
A. 3 Precise Integration of Riccati Equations and	
Optimal Control	259
A. 3.1 Computation of Interval Matrices	259
A. 3. 2 Precise Integration of Riccati Equations	262
A. 3. 3 Precise Integration of the Vector $\boldsymbol{b}(t)$	263
A. 4 Response of Optimal Tracking Systems	265
A. 5 Examples of LQ Optimal Tracking	266
A. 6 Tracking Problems in an H_{∞} Setting	272
References	277

作者简介

吴志刚,1971年11月生。 1993年和1998年在哈尔滨工业 大学分别获得学士和博士学位, 1998年至2001年在大连理工大 学博士后流动站工作,现为大连 理工大学工程力学系副教授,主 要从事H。控制系统设计的数值 方法及动力系统参数识别等方面 的研究工作。先后参加和承担了 国防科技"九五"预研项目、国家 重点基础研究发展规划项目、国 家自然科学基金、中国博士后科 学基金等多个科研项目的研究工 作。已作为第一作者在国内外学 术期刊上发表论文20多篇。

内容简介

H...控制理论是目前 解决鲁棒控制问题比较 完善的理论体系,但在理 论的实际应用中仍有一 些基本的计算问题需要 进一步研究。本书以结构 力学与最优控制模拟理 论多年来的研究成果为 基础,发展了形式统一的 求解 H...系统设计中计 算问题的算法,书中介绍 了离散系统 H ... 控制与 滤波、连续系统 H。控制 与滤波的基本理论,并通 过建立 H ... 控制与滤波 系统的最优升。范数。 Hamilton 系统特征值以 及广义 Ravleigh 商之间 的联系,阐述了 H_{∞} 优化 设计问题的新内涵。本书 可供力学与自动控制等 专业的科技工作者和高 等院校相关专业的教师 和研究生参考。

第一章 线性鲁棒控制基础

反馈控制系统的设计中,控制系统的鲁棒性始终是一个核心 问题,控制系统的鲁棒性是指系统承受外界扰动及受控对象模型 不确定性影响的能力。经典的频率域方法在一定程度上能够比较 方便地处理单变量控制系统的鲁棒性问题,但在处理多变量控制 系统的分析与综合问题时往往比较困难。工程实际的需要与计算 技术的发展促进了控制理论从单变量频率域控制向以状态空间法 为标志的多变量控制的发展。以 LQG 控制为代表的现代线性控 制理论可以较好地解决多变量控制系统的分析与综合问题,在某 些领域也有成功的应用;但是当受控对象模型存在误差时,LQG 控制系统的鲁棒稳定性有可能会很差。这是因为现代控制理论完 全依赖于受控对象的精确数学模型,这样设计的控制系统只对数 学模型保证预期的性能指标,而设计指标在实际受控对象上能否 直正实现则取决于数学模型的精确程度。而实际工程中往往不可 避免地存在各种不确定因素,因此受控对象的精确模型几乎是不 可能得到的,上述因素在一定程度上限制了这种设计方法的应用。 近二十多年来,多变量系统的鲁棒控制问题始终是控制理论与应 用领域的一个主要研究内容。在各种鲁棒控制系统设计方法中,20 世纪 80 年代起逐渐发展起来的 H. 控制理论是目前解决鲁棒控 制问题比较成功而完善的理论体系,而且已经出版了一些很好的 教材与专著 $[1 \sim 7]$ 。本书在介绍 H_{∞} 控制理论的基本内容的基础上, 着重研究系统设计中的计算问题。

为了方便阅读,本章将首先介绍鲁棒控制的基本概念及 H_∞ 控制系统设计的基本思想,还将介绍多变量线性系统分析、LQG 控制、变分法、微分方程和差分方程特征值的基础知识,作为本书 后续章节的基础。本章对上述基础知识的介绍主要基于参考文献 1~5,29~33。

1.1 鲁棒控制的基本问题

1.1.1 系统不确定性描述

面向应用的鲁棒控制理论应当首先提供对系统的不确定性、 系统的静态和动态性能及系统鲁棒性的量化描述方法,然后才可 以利用相应的优化方法解决系统的控制问题。鲁棒控制系统设计 不仅是针对某一单个控制对象模型进行的,而且是面向某一个集 合的控制对象模型来进行的,所设计的控制系统对属于这个集合 的所有控制对象均应该保证稳定性和预定的性能指标。因此鲁棒 控制理论首先要研究的是不确定性系统的描述问题,本节简要介 绍系统不确定性的描述方法。本节及 1.1.2,1.1.3 的主要内容基 于文献 4,5。

以图 1.1 所示的反馈控制系统为例,其中 P(s)为控制对象的

图 1.1 反馈控制系统

传递函数模型,*K*(s)为控制器的传递函数模型。通常的控制系统 设计方法并不在模型中描述不确定性,这样的*P*(s)称为控制对象 的公称模型(标称模型)。鲁棒控制理论则在系统模型建立阶段就 考虑这种不确定性,并给出定量描述。不确定性系统的描述包括公 称模型和不确定性两个方面。不确定性亦可分为非结构不确定性 和结构不确定性两大类。非结构不确定性用于表示结构不明确的 不确定性,例如频率响应位于复平面上某个集合内的不确定性。而 结构不确定性则用于表示控制对象和不确定性之间的结构关系非 常明确的不确定性,例如控制对象中有限个参数的不确定性。一个 不确定性系统的描述包括三个方面的内容:公称模型;描述不确定 性的摄动及其与公称模型的关系;摄动的最大值。据此我们可以用 一个非结构化集合或结构化集合来描述一个不确定性系统。

现在要考虑图 1.1 中受控对象的模型误差,设误差的形式如 图 1.2 中所示,即系统模型具有加法不确定性,则实际控制对象的 传递函数模型可以表述为

图 1.2 具有加法不确定性的反馈控制系统

其中, $\Delta(s)$ 是模型不确定性的加法摄动, $s \in C$,C表示复数集合。对于单输入单输出系统,可以假设 $\Delta(s)$ 满足

 $|\Delta(j\omega)| \leq |W(j\omega)|, \forall \omega \in \mathbb{R}$ (1.1.2) 其中,R表示实数集合,而W(s)是加法摄动 $\Delta(s)$ 的最大值。因为 这里并没有给出 $\Delta(s)$ 的具体结构,所以称之为非结构不确定性。 实际的控制对象则属于下面的非结构化集合

 $U_A = \{P(s) + \Delta(s) : |\Delta(j\omega)| \leq |W(j\omega)|, \forall \omega \in R\}$ (1.1.3) 这个非结构化集合同时描述了公称模型、表示不确定性的摄动及 其与公称模型的关系以及摄动的最大值等要素,符合对不确定性 系统描述所要求的三个方面的内容。现在介绍一个简单的结构化 集合的例子,如果实际控制对象的传递函数模型为

$$P_A(s) = \frac{1}{s^2 + as + 1} \tag{1.1.4}$$

其中,参数 a 在某个区间 $[a_{\min}, a_{\max}]$ 内变化,那么这个控制对象属于下列结构化集合

$$U_{A} = \left\{ \frac{1}{s^{2} + as + 1} : a \in [a_{\min}, a_{\max}] \right\}$$
(1.1.5)

1.1.2 控制系统的鲁棒性

稳定性、渐进调节、动态特性和鲁棒性是对反馈控制系统设计 的基本要求,以往的控制系统设计理论中大多只强调前三个方面 而忽视了对控制系统鲁棒性的要求。下面分别对系统设计中这几 个方面的基本要求作简单介绍。

稳定性是控制系统设计的最基本要求,可分为内部稳定性和 外部稳定性(输入-输出稳定性)两种。前者是指控制系统从工作点 附近任意初始状态出发的轨迹在时间趋于无穷时收敛于工作点, 后者则是指系统在有界输入的情况下产生有界的输出,因此是一 个比内部稳定性弱的概念。

渐进调节特性反映的是控制系统的稳态性能,对于图 1.1 所 示系统,渐进调节是指对于一类给定的参考输入 r 和外部扰动 v, 所设计的系统必须能够保证稳态误差为 0,即

 $\lim_{t \to \infty} e(t) = \lim_{t \to \infty} [r(t) - z(t)] = 0 \qquad (1.1.6)$

其中 e 是参考输入 r 与控制对象输出 z 之差。

动态特性是对反馈系统的目标跟踪特性和扰动抑制特性等指标的要求。对系统目标跟踪特性的要求一般可以通过使系统满足阶跃激励下的上升时间、超调量、调节时间等设计指标来达到。对于扰动抑制特性,则是要求扰动的瞬态响应尽可能小。另外,对动态特性的要求也可以用一组频率指标表示,此时对动态特性的要求是对有关函数频率特性的要求。

反馈控制系统的鲁棒性是指系统在某一类特定的不确定性条件下具有使系统的稳定性、渐进调节能力和动态特性保持不变的 特性,因此控制系统的鲁棒性包含了鲁棒稳定性、鲁棒渐进调节和 鲁棒动态特性三个方面的内容。鲁棒稳定性是指系统在一组不确 定性的作用下仍然能够保证反馈系统的稳定性;鲁棒渐进调节是 指在一组不确定性的影响下仍然可以实现控制系统的渐进调节功 能。鲁棒动态特性通常也称为灵敏度特性,即要求动态特性不受不 确定性的影响。

实际控制问题的不确定性往往是有界的,鲁棒控制系统设计 中一般假定不确定性在一个可能的范围内变化,要求所设计的控 制器在这个不确定性范围内能使控制系统的稳定性和性能指标均 保持不变。因此鲁棒控制系统设计的基本思想是找到不确定性变 化的范围,并在这个范围内进行最坏情况下的系统设计。对于实际 控制系统设计,确定系统中模型不确定性和外扰不确定性的变化 范围是一个非常重要的问题。

1.1.3 基于 H_∞性能指标的控制系统设计

H_∞控制系统设计的主导思想是极小化系统某个特定的闭环 频响函数的峰值^{[4][8]}。下面通过一个简单的例子来说明这个问题, 仍然考虑图 1.1 中所示的单输入单输出(SISO)系统,该系统的开 环和闭环频率特性分别为

$$G_K(j\omega) = P(j\omega)K(j\omega) \qquad (1.1.7)$$

$$G_{B}(j\omega) = \frac{P(j\omega)K(j\omega)}{1 + P(j\omega)K(j\omega)}$$
(1.1.8)

按照经典的频域控制理论,可以通过设计控制器 K 来调整系统的 开环频率特性 G_K,使得闭环频率特性 G_B 满足预定的性能指标。如 果实际控制对象的频响函数为

$$P(j\omega) = P_0(j\omega) + \Delta P(j\omega) \qquad (1.1.9)$$

其中 $P_0(j\omega)$ 为设计中所使用的标称模型, $\Delta P(j\omega)$ 表示模型与实际 对象之间的误差,那么相应地开环和闭环频率特性也具有误差

$$\Delta G_K(j\omega) = G_K(j\omega) - G_{K_0}(j\omega) \qquad (1.1.10a)$$

$$\Delta G_B(\mathbf{j}\omega) = G_B(\mathbf{j}\omega) - G_{B0}(\mathbf{j}\omega) \qquad (1.1.10b)$$

其中开环和闭环频率特性的标称值分别为

$$G_{K_0}(j\omega) = P_0(j\omega)K(j\omega) \qquad (1.1.11a)$$

$$G_{B_0}(j\omega) = \frac{P_0(j\omega)K(j\omega)}{1 + P_0(j\omega)K(j\omega)}$$
(1.1.11b)

即使在系统设计时没能精确地考虑模型误差引起的开环频率特性的偏差,但如果由此而引起的闭环特性的偏差足够小,那么模型误 差对实际系统闭环性能的影响也不会太大。这是因为

$$\frac{\Delta G_B(j\omega)}{G_B(j\omega)} = \frac{1}{1 + P_0(j\omega)K(j\omega)} \frac{\Delta G_K(j\omega)}{G_K(j\omega)} \qquad (1.1.12)$$

现在定义干扰 v 到输出 z 的闭环传递函数为

$$S(s) = \frac{1}{1 + P_0(s)K(s)}$$
(1.1.13)

这个传递函数可以描述开环特性的相对偏差 $\Delta G_K/G_K$ 到闭环特性 相对偏差 $\Delta G_B/G_B$ 的增益。通过设计控制器 K 使 S 的增益足够 小,就可以将闭环频率特性的偏差抑制在工程允许的范围内。定义 此传递函数的 H_{∞} 范数为

$$\|S\|_{\infty} = \sup_{\omega \in \mathcal{B}} |S(j\omega)| \qquad (1.1.14)$$

如果能使 S 的峰值比较小,则 S 在所有频率上的值都会比较小, 从而可以抑制所有频率成分的干扰。

如果干扰 v 的频率成分未知但能量有限,即

$$\|v\|_{2}^{2} = \int_{-\infty}^{\infty} v^{2}(t) dt \qquad (1.1.15)$$

是有限值,其中 $\|v\|_2$ 表示信号 v 的 2-范数。可以定义从输入 v 到输出 z 的系统诱导范数(induced norm)为

$$\|S\| = \sup_{\|v\|_{2} < \infty} \frac{\|z\|_{2}}{\|v\|_{2}}$$
(1.1.16)

利用 Parseval 定理可以证明

$$||S|| = ||S||_{\infty}$$
(1.1.17)

所以 H_∞范数 || S || _∞可以描述干扰输入信号的能量到输出信号的

能量之间的最大增益,也就是系统的诱导范数,*H*_∞优化设计就是 极小化系统的这个诱导范数。

1.1.4 H_∞系统设计中的计算问题

H_∞控制理论的发展经历了基于系统传递函数矩阵描述的设 计阶段和直接在状态空间描述上进行设计的阶段。根据系统描述 方式的不同,H_∞控制系统设计方法也被分为频域法和时域法两 类。这两类方法都适用于线性定常系统的H_∞优化设计问题,但时 变系统、非线性系统的H_∞优化设计则必须以状态空间描述为基 础。随着研究的深入和理论的逐渐成熟,H_∞设计方法被用于解决 航空、航天、机械、化工等诸多领域的控制系统设计问题。应用领域 的需求使得数值方法研究的重要性也日益增强,在一些算法已经 形成商业软件包的基础上,仍然不断有新的算法发表^{[9][10]}。

频域法以系统的传递函数矩阵描述为基础,虽然解的表达形 式简单明了,但求解过程繁琐,解法的物理意义不太明确,控制器 阶次也较高。时域法则以系统的状态空间描述为基础,通过求解适 当的 Riccati(黎卡提)方程实现系统设计,具有设计过程简单、计 算量少、控制器阶次较低、结构特性明显等特点^{[3][4]}。典型的 H_{∞} 控 制系统设计软件包如 MATLAB 中的 Robust Control Toolbox (鲁棒控制工具箱)和 μ Analysis and Synthesis Toolbox(μ 分析 与综合工具箱)就采用了时域设计方法^[11]。MATLAB 中的 LMI Toolbox(线性矩阵不等式工具箱)提供了通过求解线性矩阵不等 式实现系统设计的软件包,是近年来比较引人注目的一种方 法^[13]。由于时域 H_{∞} 性能指标的引入和时域法的应用,时变与时不 变系统,有限时间及无限时间域的 H_{∞} 优化问题都可以在统一的 框架下展开研究,而实现系统设计的基础在于 Riccati 方程的求解 和 H_{∞} 性能指标的计算^[12]。

首先介绍 H_∞性能指标的计算问题,参考文献中所列的二等 分法^[14]、梯度法^[15]、求解奇异控制最优 H_∞性能指标的算法^[16],以 及计算离散系统最优 H ... 范数的割线法^[10]等只是众多研究这一问 题的文献中的一部分。这些各具特色的方法,实际上体现了对最优 H。性能指标本质意义不同角度的认识。上述方法都是针对无限 时间 H_{∞} 控制问题的,对有限时间域控制系统最优 H_{∞} 性能指标的 算法研究则相对很少。但事实上有限时间 H。控制不仅具有重要 的理论意义[12],而日具有非常重要的工程应用背景。例如现代高 性能战斗机要求在几秒钟内完成飞行机动动作[17],必须考虑有限 时间内的控制系统设计。文献 17~22 从不同角度提出了有限时间 H。优化问题的最优性能指标计算方法。文献 17 基于与控制问题 相联系的微分方程两端边值问题非平凡解的存在条件,通过迭代 计算最优 H.,,性能指标: 文献 18 则将问题转化为计算非线性最优 控制的性能指标,可以用于线性时变系统,这种方法需求解一系列 复杂的非线性矩阵微分方程。文献 19~22 基于最优控制与结构力 学的模拟关系,指出了最优 H.。性能指标与结构振动问题中 Wittrick—Williams 算法计算这一指标。本书以此工作为基础,利 用 Hamilton 微分系统和差分系统的特征值理论,分别建立了离散 系统和连续系统的最优 H...性能指标与 Hamilton 差分方程及微 分方程边值问题特征值[23][24]之间的联系,并系统地介绍了离散和 '连续系统最优 H.a.性能指标计算及 Riccati 方程求解的方法。最后 介绍了这一研究方向的最新成果,利用 Hamilton 系统的模态综合 法研究分散 H. 控制和 H. 滤波系统设计中的计算问题。

最优 H_∞性能指标的计算与 Riccati 方程的求解往往是密切 相关的。为实现系统的闭环控制,也需要求解 Riccati 代数方程或 微分方程。Riccati 方程在科学与工程的许多领域都有应用,对其 性质与解法的研究已经有相当长的历史^[25]。近年来,由于对有限 时间控制、时变系统控制、系统瞬态特性等问题研究的需要,对 Riccati 微分方程的解法及解的性质的研究引起越来越多的注意。 在各种求解 Riccati 微分方程的数值方法中,利用方程结构特征的 矩阵值算法是颇有特色的一种方法^[26]。求解 Riccati 微分方程的 精细积分方法源自结构力学,也利用了这类方程的特点^[27],这一 算法中的 2^N 类矩阵运算公式不仅可以保证数值解的高精度,而且 在积分步长大幅度变化时仍能保持计算结果的一致性,另外在求 解方程的同时还可计算闭环系统的状态转移矩阵和可控性矩阵等 参数。

虽然 H_∞控制问题的数值方法研究已经取得丰富的成果,但 是仍然有一些基本问题的数值求解方法需要进一步的研究,如有 限时间控制、时变系统控制等,现有的一些数值方法也值得重新审 视。例如文献 9 中根据实际例题的计算结果指出:不仅对 H_∞系统 设计中的计算问题,即使对于极点配置、LQ 控制这样的经典问 题,其求解途径和算法也有更新改进的必要。因此有必要从新的角 度理解与研究控制系统设计中的计算问题,而借鉴其他领域的方 法无疑是一条新的途径。文献 27 系统地介绍了最优控制与结构力 学的模拟理论以及相应的数值方法,文献 28 中则有对这一研究方 向上新的研究成果的介绍。研究控制问题的数值方法需要从形式 不同的等价数学表达式中选择适于数值计算的表达式,而且由于 控制问题的数值求解总是着眼于实际应用,所以算法应当尽可能 地反映问题的物理本质,在保证精度的同时尽可能地使计算结果 具有相应的物理意义^{[9][28]}。

1.2 多变量线性系统

线性系统是控制理论中的主要研究对象,也是研究成果最为 完整和成熟的系统,其中所建立的概念、原理、方法是学习和深入 研究控制理论的基础。在本节和1.3节中,主要基于参考文献1,2, 4,5 中的相关内容对多变量线性系统的基本概念和基本知识进行 了介绍,作为理解后续章节内容的基础。

1.2.1 线性系统模型

A:连续系统模型

线性时变系统状态空间模型的一般形式为

 $\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$ (1.2.1a)

$$\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t) \qquad (1.2.1b)$$

其中 x(t) 是系统的状态向量,u(t) 是系统的输入向量,y(t) 为输 出向量。矩阵 A(t) 称为系统矩阵,B(t) 称为输入矩阵,C(t) 是输出 矩阵,D(t) 是输入输出耦合矩阵。方程(1.2.1a) 称为状态方程,方 程(1.2.1b) 称为量测或输出方程。

对方程(1.2.1a)积分,可以得到系统的状态

 $\boldsymbol{x}(t) = \boldsymbol{\Phi}(t,t_0)\boldsymbol{x}(t_0) + \int_0^t \boldsymbol{\Phi}(t,\tau)\boldsymbol{B}(\tau)\boldsymbol{u}(\tau)\mathrm{d}\tau \quad (1.2.2)$

其中, $x(t_0)$ 为初始时刻的状态, $o(t,t_0)$ 是系统的状态转移矩阵, 并满足下列矩阵微分方程

 $\dot{\Phi}(t,t_0) = A(t)\Phi(t,t_0), \Phi(t_0,t_0) = I$ (1.2.3) 系统的输出为

$$\mathbf{y}(t) = \mathbf{C}(t)\mathbf{\Phi}(t,t_0)\mathbf{x}(t_0) + \int_0^t \mathbf{C}(t)\mathbf{\Phi}(t,\tau)\mathbf{B}(\tau)\mathbf{u}(\tau)\mathrm{d}\tau + \mathbf{D}(t)\mathbf{u}(t)$$

(1.2.4)

对于线性定常系统

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) \qquad (1.2.5a)$$

$$y(t) = Cx(t) + Du(t)$$
 (1.2.5b)

式(1.2.2)和式(1.2.4)可以表示为

$$\boldsymbol{x}(t) = \mathrm{e}^{At}\boldsymbol{x}(t_0) + \int_0^t \mathrm{e}^{A(t-\tau)}\boldsymbol{B}\boldsymbol{u}(\tau)\mathrm{d}\tau \qquad (1.2.6)$$

$$\mathbf{y}(t) = \mathbf{C} \mathrm{e}^{At} \mathbf{x}(t_0) + \int_0^t \mathbf{C} \mathrm{e}^{A(t-\tau)} \mathbf{B} \mathbf{u}(\tau) \mathrm{d}\tau + \mathbf{D} \mathbf{u}(t) \quad (1.2.7)$$

$$e^{At} = I + At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3 + \cdots$$

显然指数矩阵 e^{At} 是计算 x(t) 和 y(t) 的关键,其精细计算的方法见 文献 27。根据式(1.2.7) 可以定义系统的脉冲响应矩阵如下

$$\boldsymbol{g}(t) = \begin{cases} \boldsymbol{C} e^{At} \boldsymbol{B} + \boldsymbol{D} \delta(t), & t \ge 0\\ \boldsymbol{0}, & t < 0 \end{cases}$$
(1.2.8)

其中, $\delta(t)$ 是 Dirac 脉冲函数,脉冲响应矩阵 g(t) 的各元素可根据 (1.2.7) 计算。初始条件 $x(t_0) = 0$ 时,令输入向量中各元素为

$$u_k(t) = \begin{cases} \delta(t), & k = j \\ 0, & k \neq j \end{cases}$$
(1.2.9)

则有

$$g_{ij}(t) = y_i(t)$$
 (1.2.10)

由此还可以给出系统输出的另一种表达形式 $\mathbf{y}(t) = \mathbf{C} e^{At} \mathbf{x}(t_0) + \int_0^t \mathbf{g}(t-\tau) \mathbf{u}(\tau) d\tau = \mathbf{C} e^{At} \mathbf{x}(t_0) + \mathbf{g}(t) \otimes \mathbf{u}(t)$ (1.2.11)

上式中的 🛇 是卷积符号。

需要指出的是,系统的状态空间模型并不是惟一的。一个实际 系统的状态空间描述可以有无穷多个,只要将一个系统的状态向 量重新进行线性组合就可以得到一组新的状态向量。这个过程实 际上就是通过对状态向量基底的变换来形成一个新的状态模型, 新模型与原模型之间的联系则是相似变换。在相似变换下,系统的 输入输出并不发生变化,因此从输入输出角度来看,存在相似变换 关系的不同状态空间模型描述的仍然是同一物理系统。通过相似 变换,可以得到具有特定代数结构与数值计算特性的状态模型,从 而简化系统的分析与设计^[2]。

考虑式(1.2.5)所描述的线性定常系统,如果定义一个新的 状态变量 $\widetilde{\boldsymbol{x}}(t) = \boldsymbol{T}^{-1}\boldsymbol{x}(t) \qquad (1.2.12)$

其中,T是一个常值可逆矩阵,并将其代入式(1.2.5)可得

 $\mathbf{T}\dot{\tilde{\mathbf{x}}}(t) = (\mathbf{A}\mathbf{T})\tilde{\mathbf{x}}(t) + \mathbf{B}\mathbf{u}(t) \qquad (1.2.13a)$

 $\mathbf{y}(t) = (\mathbf{CT})\tilde{\mathbf{x}}(t) + \mathbf{Du}(t) \qquad (1.2.13b)$

上式左乘 T⁻¹ 就可得到系统新的状态空间模型

$$\dot{\tilde{\boldsymbol{x}}}(t) = (\boldsymbol{T}^{-1}\boldsymbol{A}\boldsymbol{T})\tilde{\boldsymbol{x}}(t) + (\boldsymbol{T}^{-1}\boldsymbol{B})\boldsymbol{u}(t) \quad (1.2.14a)$$

$$\mathbf{y}(t) = (\mathbf{CT})\tilde{\mathbf{x}}(t) + \mathbf{Du}(t) \qquad (1.2.14b)$$

其状态变量为 x。显然,新模型与原模型之间的关系为

 $A \Rightarrow T^{-1}AT; B \Rightarrow T^{-1}B; C \Rightarrow CT; D \Rightarrow D$ (1.2.15) 上述变换称为线性系统的相似变换。

比较式(1.2.5)和式(1.2.14)可知两者的输入输出关系并没 有发生变化,由此可知系统的输入输出在相似变换下并不发生变 化,所以描述系统输入输出关系的传递函数模型在相似变换下也 是不变的。

B:离散系统模型

时变系统的离散状态空间模型为

 $\mathbf{x}(k+1) = \mathbf{\Phi}(k)\mathbf{x}(k) + \mathbf{H}(k)\mathbf{u}(k)$ (1.2.16a)

y(k) = C(k)x(k) + D(k)u(k) (1.2.16b)

若其中的系数矩阵与 k 无关,则成为定常系统的状态空间模型

 $x(k+1) = \Phi x(k) + Hu(k)$ (1.2.17a)

y(k) = Cx(k) + Du(k) (1.2.17b)

将线性连续系统的状态方程化为离散时间状态方程有许多方法, 如欧拉法、零阶保持近似方法、双线性变换等。对于线性定常系统 来讲,零阶保持近似方法是比较普遍的离散化方法,简述如下:

设系统(1.2.5)的输入在采样间隔 △t 内保持不变,即

 $u(t) = u(0), t \in [0, \Delta t)$ (1.2.18)

则在采样时刻 △t 时的状态可表示为

$$\boldsymbol{x}(\Delta t) = e^{A\Delta t} \boldsymbol{x}(0) + \int_{0}^{\Delta t} e^{A(\Delta t-\tau)} \boldsymbol{B} \boldsymbol{u}(0) d\tau = e^{A\Delta t} \boldsymbol{x}(0) + \left(\int_{0}^{\Delta t} e^{A\tau} \boldsymbol{B} d\tau \right) \boldsymbol{u}(0)$$
(1.2.19)

或者写成

$$\boldsymbol{x}(\Delta t) = \boldsymbol{\Phi}(\Delta t)\boldsymbol{x}(0) + \boldsymbol{H}(\Delta t)\boldsymbol{u}(0) \qquad (1.2.20)$$

其中

$$\boldsymbol{\Phi}(\Delta t) = \mathrm{e}^{A\Delta t} \tag{1.2.21a}$$

$$\boldsymbol{H}(\Delta t) = \int_{0}^{\Delta t} \mathrm{e}^{A\tau} \boldsymbol{B} \mathrm{d}\tau \qquad (1.2.21\mathrm{b})$$

由于系统是定常的,其离散模型可表示成

 $\boldsymbol{x}(k\Delta t + \Delta t) = \boldsymbol{\varphi}\boldsymbol{x}(k\Delta t) + \boldsymbol{H}\boldsymbol{u}(k\Delta t) \quad (1.2.22a)$

 $\mathbf{y}(k\Delta t) = C\mathbf{x}(k\Delta t) + D\mathbf{u}(k\Delta t) \qquad (1.2.22b)$

也可以省略 Δt 将其简写为式(1.2.17)的形式。

C:传递函数模型

线性定常系统也可以用传递函数模型描述。对式(1.2.5)进行 Laplace 变换得

 $sX(s) - x(t_0) = AX(s) + BU(s)$ (1.2.23a)

Y(s) = CX(s) + DU(s) (1.2.23b)

设初始条件 $x(t_0) = 0$,可得输出的 Laplace 变换 Y(s) 与输入的 Laplace 变换 U(s) 之间的关系

 $\mathbf{Y}(s) = \{ \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D} \} \mathbf{U}(s) = \mathbf{G}(s)\mathbf{U}(s)$

(1.2.24)

系统的传递函数定义为

 $G(s) = C(sI - A)^{-1}B + D$ (1.2.25)

因为 s 是复变量(也称为复频率),所以 G(s) 是一个复变函数。对 G(s) 作 Laplace 逆变换可以得到系统的脉冲响应函数矩阵 g(t), 即

$$\boldsymbol{g}(t) = \mathscr{L}^{-1}\{\boldsymbol{G}(s)\} = \mathscr{L}^{-1}\{\boldsymbol{C}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B} + \boldsymbol{D}\}$$
(1.2.26)

对 g(t) 作 Laplace 变换则可以得到系统的传递函数矩阵 G(s),即 $G(s) = \mathscr{L} \{g(t)\}$ (1.2.27)

1.2.2 系统的频率响应

利用系统的传递函数,可以很容易地计算线性系统在简谐激励下的稳态响应。线性系统的稳态响应是与激励同频的简谐信号, 只是幅值和相位发生了变化。根据这一特点,引入系统频率响应的概念。对于单输入单输出系统,其响应幅值和相位的变化(增益和 相移)定义为系统的频率响应;对于多输入多输出系统,由于不同 输入输出之间的幅值和相位不同,需通过定义主增益来描述其频 率响应特性。

考虑一般的多输入多输出系统,设系统的输入为 $u(t) = u_0 e^{st}$, 系统的输出可表示为

$$\mathbf{y}(t) = \mathbf{G}(s)\mathbf{u}_0 e^{st}$$
 (1.2.28)

若系统的输入形式为 $u(t) = u_0 e^{j\omega t}$,则系统的稳态响应为

$$\mathbf{y}(t) = \mathbf{G}(\mathbf{j}\omega)\mathbf{u}_0 \mathrm{e}^{\mathbf{j}\omega t} \qquad (1.2.29)$$

其中 $G(j\omega)$ 就是系统的频响函数矩阵,也是系统的 Fourier 变换。 只要将系统传递函数 G(s) 的定义域限定在复平面的虚轴上就可 以得到 $G(j\omega)$ 。

按照式(1.2.29),对单输入单输出系统有更明确的表达形式

 $y(t) = G(j\omega)u_0e^{j\omega t} = |G(j\omega)|u_0e^{j\omega t+2|G(j\omega)|}$ (1.2.30) 其中 $|G(j\omega)|$ 和 $2|G(j\omega)|$ 分别是单输入单输出系统的增益和相移。因此通过计算系统在某一频率范围内简谐激励下的响应就可以得到单输入单输出系统的频率响应。

与单输入单输出系统不同,多输入多输出系统的增益和相移 则比较难以定义。首先考虑下列形式的增益

$$\operatorname{Gain} = \frac{\parallel \mathbf{y}(t) \parallel}{\parallel \mathbf{u}(t) \parallel} = \frac{\parallel \mathbf{G}(j\omega)\mathbf{u}_{0}e^{j\omega t} \parallel}{\parallel \mathbf{u}_{0}e^{j\omega t} \parallel} = \frac{\parallel \mathbf{G}(j\omega)\mathbf{u}_{0} \parallel}{\parallel \mathbf{u}_{0} \parallel}$$

(1.2.31)

式中的 || • || 表示向量的 Euclidean (欧基里德)范数。显然,上述 增益形式与输入的频率 ω 和幅值 u₀ 都有关系,因此对于多输入多 输出系统无法像单输入单输出系统那样定义一个仅与频率有关的 系统增益,但是可以定义多输入多输出系统增益的变化范围,即

 $\min_{\boldsymbol{u}_0} \frac{\|\boldsymbol{G}(j\boldsymbol{\omega})\boldsymbol{u}_0\|}{\|\boldsymbol{u}_0\|} \leqslant \operatorname{Gain} \leqslant \max_{\boldsymbol{u}_0} \frac{\|\boldsymbol{G}(j\boldsymbol{\omega})\boldsymbol{u}_0\|}{\|\boldsymbol{u}_0\|} (1.2.32)$

由于线性系统的增益并不随输入幅值的变化而变化,所以还可以 定义与上式等价的系统增益范围

 $\min_{\|\boldsymbol{u}_0\|=1} \|\boldsymbol{G}(\boldsymbol{j}\boldsymbol{\omega})\boldsymbol{u}_0\| \leqslant \operatorname{Gain} \leqslant \max_{\|\boldsymbol{u}_0\|=1} \|\boldsymbol{G}(\boldsymbol{j}\boldsymbol{\omega})\boldsymbol{u}_0\|$

(1.2.33)

一般来讲,多输入多输出系统的每一个输入与输出之间的相 移都是不同的,因此无法对多输入多输出系统给出一个合理的相 移定义。同时,由于相移 φ 也可以表示成 φ + 2 π 等值,相移的范围 也无法定义,所以多输入多输出系统的频率响应一般是指该系统 的最大增益和最小增益。

直接按照式(1.2.32) 或(1.2.33) 确定多输入多输出系统的 增 益范围是非常麻烦的,一般需利用矩阵的奇异值分解来简化计 算过程^[2]。由于系统的传递函数矩阵是频率的函数,该矩阵的所有 奇异值也是频率的函数,这些奇异值称为系统的主增益,由主增益 的最大最小值就可以确定系统的增益范围。

1.2.3 系统的零点和极点

A:单输入单输出系统的极点和零点

单输入单输出系统的传递函数是一个分数多项式

 $G(s) = \boldsymbol{C}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B} + \boldsymbol{D}$

$$= \frac{Cadj(sI - A)B + Ddet(sI - A)}{det(sI - A)}$$

= $\frac{s^m + b_{m-1}s^{m-1} + b_{m-2}s^{m-2} + \dots + b_1s^1 + b_0}{s^n + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \dots + a_1s^1 + a_0}$

(1.2.34)

(1, 2, 36)

其中 adj 和 det 分别表示矩阵的伴随阵和行列式值,对于一个实际 系统,必然有 $n > m_a$ 如果传递函数的分子和分母多项式没有公因 子,则传递函数 G(s) 为不可约的。 $\{A, B, C, D\}$ 称为系统的状态空 间实现,如果 det(sI - A)等于此传递函数的分母多项式,则称 $\{A, B, C, D\}$ 为 G(s) 的最小状态空间实现^[2]。传递函数分子多项式

 $s^{m} + b_{m-1}s^{m-1} + b_{m-2}s^{m-2} + \dots + b_{1}s^{1} + b_{0} = 0$ (1.2.35)

的解定义为系统的零点。当然,系统的零点 z_i 也是使 $G(z_i) = 0$

的点。传递函数分母多项式

 $s^{n} + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \dots + a_{1}s^{1} + a_{0} = 0$ (1.2.37) 的解定义为系统的极点。系统的极点 p_{i} 也可以定义为满足 $|G(p_{i})| = \infty$ (1.2.38)

的点。考虑系统的状态空间模型,若 $\{A,B,C,D\}$ 是系统的最小实现,则系统的极点是下列特征方程的根

det(sI - A) = 0 (1.2.39) 因此系统的极点就是系统矩阵 A 的特征值。实际系统的零点和极 点 包括实数与复数两种类型,复数零极点总是成对出现构成复平 面上的共轭点。

B:多输入多输出系统的极点和零点

多输入多输出系统的极点和零点有多种定义方式,其严格定 义涉及到更多的知识,这里所介绍的并不是严格的定义。多输入多 输出系统传递函数矩阵的每一个元素都是一个单输入单输出系统
的 传递函数,因此多输入多输出系统的极点可以定义为上述所有 单输入单输出系统极点的并集^[2]。

多输入多输出系统的零点定义为使传递函数矩阵的秩满足 rank $[G(s)] < \min\{n_x, n_y\}$ (1.2.40)

的 s 值,式中的 n_y和 n_u分别为输出向量和输入向量的维数。可以发现单输入单输出系统的零点定义实际上是(1.2.40)的一个特例。 如果系统的传递函数矩阵是方阵,则系统的零点是使下列方程成 立的 s 值。

 $\det[\mathbf{G}(s)] = 0 \tag{1.2.41}$

由这个条件可知,系统有可能在输入不为零的情况下输出为零,即 $Y(s) = \mathbf{0} = G(s)U(s)$ (1.2.42)

1.2.4 系统的稳定性、可控性、可观性

A:系统的稳定性

系统的稳定性是控制理论中一个非常重要的概念,也是对控制系统设计最基本的要求。前面已经分别介绍了系统的状态空间模型和传递函数模型,这两种模型分别描述了系统内部状态之间的关系和输入输出关系。相对应地,系统稳定性的概念也有内部稳定性和外部稳定性两种。

首先介绍内部稳定性的概念。讨论内部稳定性时需假定控制 输入u(t) = 0。考虑线性定常系统(1.2.5),若对于任意初始状态 $x(t_0) = x_0$ 有

$$\lim \mathbf{x}(t) = \mathbf{0} \tag{1.2.43}$$

则称该系统是内部稳定的。

若系统是内部稳定的,则称系统矩阵A是渐近稳定的。控制输 入u(t) = 0时系统状态的变化规律为

$$\boldsymbol{x}(t) = \mathrm{e}^{At} \boldsymbol{x}(t_0) \tag{1.2.44}$$

因此矩阵 A 渐近稳定的结论与

 $\operatorname{lime}^{At} = \mathbf{0} \tag{1.2.45}$

是等价的。矩阵 A 的稳定性可归结为其特征值的性质,即矩阵 A 稳 定的充要条件是其所有特征值都在复平面的左半部分。

现在介绍外部稳定性的概念,不失一般性,这里假设系统的初始状态 $x(t_0) = 0$ 。如果一个系统对有界的输入产生有界的输出,则这个系统是外部稳定的,系统称为有界输入 - 有界输出稳定 (Bounded Input-Bounded Output),即 BIBO 稳定。单输入单输出系统 BIBO 稳定的充要条件是系统的脉冲响应函数 g(t) 绝对可积,即满足

 $\int_{0}^{+\infty} |g(t)| dt < +\infty \qquad (1.2.46)$

多输入多输出系统 BIBO 稳定的充要条件是系统的脉冲响应函数 矩阵 G(t) 中的每个元素 $g_{ii}(t)$ 均满足绝对可积条件

 $\int_{0}^{+\infty} |g_{ij}(t)| \mathrm{d}t < +\infty \qquad (1.2.47)$

多输入多输出系统 BIBO 稳定的另一个充要条件是系统的脉冲响 应函数矩阵 G(s) 中的每个元素 $g_{ii}(s)$ 的极点均具有负实部。

系统内部稳定性与外部稳定性之间还存在下列关系:线性定 常系统的 BIBO 稳定性并不能保证其内部稳定性,但具有内部稳 定性的线性定常系统必然是 BIBO 稳定的;若线性定常系统是可 控和可观的,则其内部稳定性与 BIBO 稳定性是等价的。

B: 可控性和可观性

在线性系统理论中,系统状态的可控性和可观性是两个非常 重要的概念。状态可控性是控制输入支配系统状态向量的能力;状 态可观性是系统输出量反映状态向量的能力。基于这两个性质可 以判断系统在什么条件下可以由输入来控制,以及在什么条件下 可以利用输入和输出信息估计系统的状态。利用这两个性质还可 以合理地选择作动器和传感器,构造系统的控制器和观测器。 一个系统是可控的当且仅当可以利用系统的输入在有限时间 $0 \leq t_{\rm f} - t_0 < \infty$ 内将系统从任意的初始状态 $\mathbf{x}(t_0) = \mathbf{x}_0$ 转换到另 一个任意的终端状态 $\mathbf{x}(t_{\rm f}) = \mathbf{x}_{\rm f_0}$ 判断线性定常系统(1.2.5)的可 控性比较简单,最基本的一个方法是判断其可控性矩阵是否满秩。 若可控性矩阵

 $\boldsymbol{Q}_{c} = \begin{bmatrix} \boldsymbol{B} \vdots \boldsymbol{A}\boldsymbol{B} \vdots \boldsymbol{A}^{2}\boldsymbol{B} \vdots \cdots \vdots \boldsymbol{A}^{n-1}\boldsymbol{B} \end{bmatrix}$ (1.2.48)

满秩,则系统可控。其中 n 是系统的阶次,即系统状态向量的维数。 一个系统是可观的当且仅当可以根据系统在任意有限时间 $0 \leq t_{f} - t_{0} < \infty$ 内的输入 u(t) 和输出 y(t)确定系统的状态

 $x(t_0)$ 。类似于可控性的判据,若系统的可观性矩阵

$$\boldsymbol{Q}_{0} = \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{C}\boldsymbol{A} \\ \boldsymbol{C}\boldsymbol{A}^{2} \\ \vdots \\ \boldsymbol{C}\boldsymbol{A}^{n-1} \end{pmatrix}$$
(1.2.49)

满秩,则系统可观。

C: 可稳定性和可检测性

线性定常系统的可稳定性和可检测性与可控性和可观性相关 联,是鲁棒控制中的一个重要概念,因此这里对其作简单介绍。

对于线性定常系统(1.2.5),其状态反馈控制律为u = Fx,若 闭环控制系统对任意的初始状态 $x(t_0)$ 都存在满足 $\lim_{t \to \infty} x(t) = 0$ 的 解,则系统是可稳定的,即(A, B)是可稳定的。系统可稳定性的判 定可以利用下列等价条件:

1. 存在使 A + BF 渐近稳定的矩阵 F;

2. 对于任意的 $\operatorname{Re}(s) \ge 0$ 有 $\operatorname{rank}[sI - A \quad B] = n_{\circ}$

与可稳定性对偶的概念是可检测性,对于线性定常系统 (1.2.5),如果(A^{T} , C^{T})是可稳定的,则系统是可检测的,即(C,A) 是可检测的。类似地,系统可检测性的判定也可以利用下列等价条 件:

(1) 存在使 A + HC 渐近稳定的矩阵 H;

(2) 对于任意的 Re(s) ≥ 0 有 rank $\begin{bmatrix} sI - A \\ C \end{bmatrix} = n_{\circ}$

1.2.5 系统状态观测器

极点配置方法是控制系统设计的一种基本方法,其思想是将 闭环系统的极点配置在指定的位置,而这些极点位置的选择应当 使系统满足特定的性能指标。基于系统的状态空间模型进行系统 设计时,如果能够利用系统的所有状态,则极点配置过程比较简 单。如果无法获得系统的所有状态,则需要利用状态观测器对系统 的状态进行估计,然后再基于对状态的估计实现系统的反馈控制。 现在分别介绍这方面的基本概念。

A: 状态反馈

以下列线性定常系统为例

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ (1.2.50a)

y(t) = Cx(t) + Du(t) (1.2.50b)

要求设计一个控制器使得该系统的状态可以从任意初始状态趋向 于零。设控制器具有下列形式

 $\boldsymbol{u}(t) = -\boldsymbol{K}\boldsymbol{x}(t) \qquad (1.2.51)$

该控制器可以利用系统的全部状态进行反馈,显然控制律是由增益矩阵 K 决定的。将式(1.2.51)代入式(1.2.50a)可得闭环系统的状态方程

 $\dot{\mathbf{x}}(t) = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x}(t)$ (1.2.52)

此方程的解为

 $\boldsymbol{x}(t) = \mathrm{e}^{(A - BK)t} \boldsymbol{x}(0) \qquad (1.2.53)$

显 然,如果闭环系统矩阵(A - BK)所有特征值的实部为负,则控制器(1.2.51)可以使系统的状态从任意初始值逐渐趋于零。

反馈增益阵 K 的选择首先要保证系统的稳定性,但这只是最

基本的要求,系统设计时总是希望系统状态能够在一个合理的给 定的时间内趋于零而不是经过无限长时间才趋于零,还要求系统 具备一些其他性质,如比较小的超调量和合理的阻尼比,这些都可 以通过增益矩阵K的选择来实现,当然满足条件的K也不止一个。 如果已经给定闭环系统的期望极点 $\{p_1, p_2, \dots, p_n\}$,则增益矩阵K可以通过求解下列方程获得

 $\det(sI - A + BK) = (s - p_1)(s - p_2)\cdots(s - p_n)$ (1.2.54)

一般来讲,当系统可控时,对任意的期望极点 $\{p_1, p_2, \dots, p_n\}$ 都存 在满足方程(1.2.54)的矩阵 *K*。

对于实际系统,利用其全部状态进行反馈控制往往是不可能 的,一般是利用状态观测器估计系统的状态,然后将所估计的状态 用于反馈。下面介绍状态观测器的有关知识。

B: 状态观测器

状态观测器的主要用途是在给定系统输入输出的情况下估计 系统状态,实际系统的某些状态往往是无法直接测量的。以系统 (1.2.50)为例,设其状态观测器具有下面的形式

 $\dot{\hat{x}}(t) = F\hat{x}(t) + Gy(t) + Hu(t)$ (1.2.55)

其中 $\hat{x}(t)$ 是状态估计。矩阵F,G和H的选择应当使系统的实际 状态与估计状态之间的误差趋于零。定义这一误差为

 $e(t) = \mathbf{x}(t) - \hat{\mathbf{x}}(t)$ (1.2.56)

对上式求导并将式(1.2.50a,b)和(1.2.55)分别代入得

 $\dot{e}(t) = (A - GC)x(t) - F\hat{x}(t) + (B - GD - H)u(t)$ (1.2.57)

根据上式,若选择

$$F = A - GC \tag{1.2.58}$$

则式(1.2.57)成为关于误差向量 e(t) 的状态方程

 $\dot{e}(t) = (A - GC)e(t) + (B - GD - H)u(t)(1.2.59)$ 进一步选择

$$\boldsymbol{H} = \boldsymbol{B} - \boldsymbol{G}\boldsymbol{D} \tag{1.2.60}$$

可得齐次状态方程

 $\dot{e}(t) = (A - GC)e(t)$ (1.2.61)

显然状态观测器的设计最终归结为观测增益矩阵 G 的选择。如果 系统(1.2.50)是可观的,则通过选择合适的观测增益矩阵 G 不仅 可以使系统(1.2.61)稳定,还可以任意配置观测器的极点,从而 可以调节观测器误差趋于零的速度以及超调量等性质。

因为系统(1.2.61)的极点也是式(1.2.55)的极点,因此称其 极点为观测器的极点。给定观测器的期望极点 $\{p_{o1}, p_{o2}, \dots, p_{on}\}$,可 以通过求解下列方程得到观测增益矩阵 G_{o2}

 $\det(sI - A + GC) = (s - p_{o1})(s - p_{o2})\cdots(s - p_{on})$ (1.2.62)

上述方程与式(1.2.54)非常相似。事实上,观测器的设计与控制器的设计是密切相关的,其问题列式与结果都是相似的,这种相似性也称为对偶性(duality),本书后面的章节对此还有讨论。

C: 分离性原理

对于可控系统,利用线性状态反馈可以实现对其闭环极点的 任意配置,但状态反馈需要系统的所有状态,这往往是困难的甚至 是不可实现的。对于大多数系统,一般只能测量到部分状态向量及 状态向量的线性组合构成的输出向量,这类系统的控制问题称为 输出反馈控制问题。前面已经介绍了状态观测器的概念,利用系统 的 输出向量通过状态观测器可以估计系统的全部状态向量,而且 可 以通过调整设计变量使观测器的估计误差渐近趋于零。最终通 过将状态观测器与状态反馈控制器结合起来解决输出反馈控制问 题。

对于输出反馈控制问题,可以首先利用状态观测器

 $\hat{x}(t) = F\hat{x}(t) + Gy(t) + Hu(t)$ (1.2.63a) 给 出系统所有状态的估计,然后按照全状态反馈控制问题设计控 制器的反馈增益并形成控制律

 $\boldsymbol{u}(t) = -\boldsymbol{K}\hat{\boldsymbol{x}}(t) \qquad (1.2.63b)$

式(1.2.63)就构成了带有观测器的输出反馈控制系统。

状态方程(1.2.63) 与受控系统的状态方程(1.2.50) 相结合 即可构成整个闭环系统的状态方程

$$\begin{cases} \dot{\boldsymbol{x}} (t) \\ \dot{\boldsymbol{x}} (t) \end{cases} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{F} \end{bmatrix} \begin{cases} \boldsymbol{x}(t) \\ \dot{\boldsymbol{x}} (t) \end{cases} + \begin{bmatrix} \boldsymbol{B} \\ \boldsymbol{H} \end{bmatrix} \boldsymbol{u}(t) + \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{G} \end{bmatrix} \boldsymbol{y}(t)$$

将(1.2.50)和(1.2.63)中的输出向量和控制向量分别代入上式 得

$$\begin{cases} \dot{\mathbf{x}} (t) \\ \dot{\hat{\mathbf{x}}} (t) \end{cases} = \begin{bmatrix} \mathbf{A} & -\mathbf{B}\mathbf{K} \\ \mathbf{G}\mathbf{C} & \mathbf{F} - \mathbf{H}\mathbf{K} - \mathbf{G}\mathbf{D}\mathbf{K} \end{bmatrix} \begin{cases} \mathbf{x}(t) \\ \hat{\mathbf{x}} (t) \end{cases} \quad (1.2.65)$$

回顾状态观测器中对 H 矩阵的选择方式,将式(1.2.60) 代入上式 得

$$\begin{cases} \dot{\mathbf{x}}^{(t)} \\ \dot{\mathbf{x}}^{(t)} \end{cases} = \begin{bmatrix} \mathbf{A} & -\mathbf{B}\mathbf{K} \\ \mathbf{G}\mathbf{C} & \mathbf{F} - \mathbf{B}\mathbf{K} \end{bmatrix} \begin{cases} \mathbf{x}^{(t)} \\ \hat{\mathbf{x}}^{(t)} \end{cases}$$
(1.2.66)

控制系统设计的过程一般是按照对闭环系统动态性能指标的要求 选择相应的闭环极点,进而确定上式中的几个未知矩阵。现在我们 直接分析闭环系统(1.2.66)的极点分布特性,以期更进一步理解 这个问题。首先引入下列变量代换

并将其代入式(1.2.66)中得

(1, 2, 64)

. .

$$\begin{cases} \hat{\mathbf{x}}^{(t)} \\ \hat{\mathbf{e}}^{(t)} \end{cases} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{I} & -\mathbf{I} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{A} & -\mathbf{B}\mathbf{K} \\ \mathbf{G}\mathbf{C} & \mathbf{F} - \mathbf{G}\mathbf{B}\mathbf{K} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{I} & -\mathbf{I} \end{bmatrix} \begin{pmatrix} \mathbf{x}^{(t)} \\ \mathbf{e}^{(t)} \end{pmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{K} & \mathbf{B}\mathbf{K} \\ \mathbf{0} & \mathbf{F} \end{bmatrix} \begin{pmatrix} \mathbf{x}^{(t)} \\ \mathbf{e}^{(t)} \end{pmatrix}$$
(1.2.68)

因 为相似变换并不改变系统的极点,所以闭环系统的极点是下列 方程的解

$$\det \begin{bmatrix} sI - A + BK & -BK \\ 0 & sI - F \end{bmatrix} =$$

det(sI - A + BK)det(sI - F) = 0 (1.2.69) 将上式与式(1.2.54)及式(1.2.62)比较,并考虑到式(1.2.58)可 知:带有观测器的输出反馈控制系统的闭环极点等于状态反馈控 制系统的极点加上状态观测器的极点,这就是分离性原理。根据分 离性原理,控制系统设计时可以分别设计状态观测器和状态反馈 控制器,然后再合成为控制器。深入的线性系统设计理论可参考有

关专著[1][2][5][6]。

1.2.6 信号与系统的范数

前面已经提到了信号与系统范数的概念,范数是自变量属于 线性空间的一个实值函数,记作 || • || _p,这里用 p 表示不同类型 的范数,范数具有下列基本性质

1. $\|\mathbf{x}\|_{p} \ge 0$

2. $\|x\|_{p} = 0$ 当且仅当 x = 0 时

3. $\| \alpha \mathbf{x} \|_{p} = \| \alpha \| \| \mathbf{x} \|_{p}$

4. $\|\mathbf{x} + \mathbf{y}\|_{p} \leq \|\mathbf{x}\|_{p} + \|\mathbf{y}\|_{p}$

其中 x, y 为线性空间的元素, 而 α 为标量。定义范数之后, 就可以 讨论信号与系统的度量问题。

首 先介绍向量范数的概念。实向量 x 的 2- 范数,即 Euclidean 范数定义为

$$\| \mathbf{x} \|_{2} = \sqrt{\mathbf{x}^{\mathrm{T}} \mathbf{x}} = \sqrt{\sum_{k=1}^{n} x_{k}^{2}}$$
 (1.2.70)

还可以定义加权 Euclidean 范数

$$\| \boldsymbol{x} \|_{w} = \sqrt{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{x}} \qquad (1.2.71)$$

其中,₩为正定矩阵。而向量的 ∞- 范数则定义为

$$\|\boldsymbol{x}\|_{\infty} = \max |x_i| \qquad (1.2.72)$$

其他类型的范数也可以根据需要定义。

现在介绍信号范数的概念。信号 x(t) 的 2- 范数定义为

$$\| \boldsymbol{x}(t) \|_{2} = \sqrt{\int_{-\infty}^{+\infty} \boldsymbol{x}^{*}(t) \boldsymbol{x}(t) dt} \qquad (1.2.73)$$

其中 $x^*(t)$ 表示 x(t) 的共轭转置。由于积分区间是无限的,因此所 有的信号都没有有限的 2-范数,除非 $x(t) = 0, t \in (-\infty, +\infty)$ 。 与向量范数类似,信号的加权 2- 范数定义为

$$\| \boldsymbol{x}(t) \|_{\boldsymbol{W}(t)} = \sqrt{\int_{-\infty}^{+\infty} \boldsymbol{x}^*(t) \boldsymbol{W}(t) \boldsymbol{x}(t) \mathrm{d}t} \qquad (1.2.74)$$

其 中 W(t) 在任意时间都是正定矩阵。信号在有限区间上的 2- 范 数则定义为

$$\| \boldsymbol{x}(t) \|_{2, [t_0, t_f]} = \sqrt{\int_0^{t_f} \boldsymbol{x}^*(t) \boldsymbol{x}(t) \mathrm{d}t} \qquad (1. 2. 75)$$

信号的 ∞- 范数定义为

 $\| \boldsymbol{x}(t) \|_{\infty} = \sup_{t} \max_{i} | \boldsymbol{x}_{i}(t) | \qquad (1.2.76)$

信号在有限区间的 ∞- 范数则定义为

$$\| \boldsymbol{x}(t) \|_{\infty, [t_0, t_f]} = \max_{t \in [t_0, t_f]} \max_{i} | \boldsymbol{x}_i(t) | \qquad (1.2.77)$$

在上述概念的基础上,还可以定义系统的范数。若系统的传递函数 矩阵为 G(s),则其 2-范数定义为

$$\|\boldsymbol{G}\|_{2} = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{+\infty} \operatorname{tr}[\boldsymbol{G}^{*}(j\omega)\boldsymbol{G}(j\omega)] d\omega \qquad (1.2.78)$$

其中 G^* (j ω) 表示矩阵 G(j ω) 的共轭转置。根据 Parseval 定理,可 以得到

$$\|\boldsymbol{G}\|_{2} = \sqrt{\int_{0}^{+\infty} \operatorname{tr}[\boldsymbol{g}^{\mathrm{T}}(t)\boldsymbol{g}(t)]\mathrm{d}t} \qquad (1.2.79)$$

其中g(t)是系统的脉冲响应函数矩阵,tr表示矩阵的迹,只有当系统稳定时,上述等式才成立。因此只有稳定的系统才可以定义 2-范数。

系统的 ∞- 范数则定义为

$$\|\boldsymbol{G}\|_{\infty} = \sup_{\boldsymbol{\omega}} \bar{\boldsymbol{\sigma}} [\boldsymbol{G}(j\boldsymbol{\omega})] \qquad (1.2.80)$$

其中 $\bar{\sigma}(\cdot)$ 表示矩阵的最大奇异值,等价地

$$\|\boldsymbol{G}\|_{\infty} = \sup_{\boldsymbol{u}\neq\boldsymbol{0}} \frac{\|\boldsymbol{g}(t)\otimes\boldsymbol{u}(t)\|_{2}}{\|\boldsymbol{u}(t)\|_{2}} \qquad (1.2.81)$$

其中 $g(t) \otimes u(t)$ 是输入与脉冲响应函数的卷积,即系统的输出。 由此还可以定义有限区间的 ∞ -范数

$$\|\boldsymbol{G}\|_{\infty,[t_0,t_{\mathrm{f}}]} = \sup_{u\neq 0} \frac{\|\boldsymbol{g}(t)\otimes\boldsymbol{u}(t)\|_{2,[t_0,t_{\mathrm{f}}]}}{\|\boldsymbol{u}(t)\|_{2,[t_0,t_{\mathrm{f}}]}} \quad (1.2.82)$$

所以系统的 ∞- 范数可以理解为系统在给定时间段内的最大增 益。另外,系统的 ∞- 范数还具有下列性质

 $\|G_1G_2\|_{\infty} \leq \|G_1\|_{\infty} \|G_2\|_{\infty}$ (1.2.83) 这个性质在 H_{∞} 优化理论中有广泛的应用。 H_{∞} 优化的目标就是极 小化系统的 ∞ -范数,符号 H_{∞} 中的 H 是指稳定系统的 Hardy 空 间,而 ∞ 是指系统的 ∞ -范数。

1.2.7 Lyapunov 方程

Lyapunov 方程与系统的稳定性分析、可控性及可观性判据之间存在密切的关系。在 1.2.4 节中已经介绍过线性系统内部稳定性的一个充要条件是其系统矩阵的所有特征值具有负实部,但在检验系统的稳定性时往往并不计算其特征值,而是求解 Lyapunov

方程。系统可控性与可观性的判据有很多,前面所介绍的利用可控 性及可观性矩阵的判据只是其中的一种,还可以利用系统的可控 性及可观性 Grammian 矩阵是否满秩来进行判断,可控性和可观 性 Grammian 矩阵也可以通过求解 Lyapunov 方程得到。

Lyapunov 代数方程的形式为

 $\boldsymbol{P}\boldsymbol{A} + \boldsymbol{A}^{\mathrm{T}}\boldsymbol{P} = -\boldsymbol{Q} \qquad (1.2.84)$

其中A和Q均为n维矩阵,且 $Q = Q^{T} \ge 0$ 。方程的解P也是对称阵, 该解存在且惟一的充要条件是矩阵A的特征值满足

 $\lambda_i(A) + \lambda_j(A) \neq 0$, $i, j = 1, 2, \dots, n$ (1.2.85) 当 A 为稳定阵,即 Re $\lambda_i(A) < 0$ 时,式(1.2.85)成立。矩阵 A 稳定 的充要条件为 Lyapunov 方程对于任意正定的矩阵 Q 存在正定解 P_o

Lyapunov 微分方程的形式为

 $\dot{P}(t) = P(t)A^{T} + AP(t) + Q(t)$ (1.2.86) 其中 Q(t) 为对称非负矩阵。上述 Lyapunov 代数方程和微分方程 都可以利用精细积分法求解^[28]。

现在介绍 Lyapunov 方程与线性定常系统的可控性和可观性 Grammian 矩阵的关系。线性定常系统(1.2.5)的可控性 Grammian 矩阵为

$$\boldsymbol{L}_{c} = \int_{0}^{+\infty} \mathrm{e}^{At} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \mathrm{e}^{A^{\mathrm{T}} t} \mathrm{d}t \qquad (1.2.87)$$

可观性 Grammian 矩阵为

$$\boldsymbol{L}_{o} = \int_{0}^{+\infty} \mathrm{e}^{\boldsymbol{A}^{\mathrm{T}} t} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \mathrm{e}^{\boldsymbol{A} t} \mathrm{d} t \qquad (1.2.88)$$

矩阵 L_c 和 L_a 分别满足下列两个 Lyapunov 方程

 $AL_{c} + L_{c}A^{\mathrm{T}} = -BB^{\mathrm{T}} \qquad (1.2.89a)$

 $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{L}_{o} + \boldsymbol{L}_{o}\boldsymbol{A} = -\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} \qquad (1.2.89\mathrm{b})$

因此求解 Lyapunov 方程就可以得到可控性和可观性 Grammian

矩阵。

1.2.8 Riccati 方程

Riccati 方程在最优控制理论中起着非常重要的作用,该方程 与 Hamiltonian 矩阵之间有密切的联系,本书后面的章节将详细 讨论有关内容,这里先介绍一些基本的概念。

Riccati 代数方程的形式为

 $PA + A^{T}P - PRP + Q = 0$ (1.2.90) 其中 A,Q,R 是 n 维矩阵,且 Q,R 对称。

Hamiltonian 矩阵 H 定义为

$$\boldsymbol{H} = \begin{bmatrix} \boldsymbol{A} & -\boldsymbol{R} \\ -\boldsymbol{Q} & -\boldsymbol{A}^{\mathrm{T}} \end{bmatrix}$$
(1.2.91)

如果 Hamiltonian 矩阵 *H* 在虚轴上没有特征值,则当 λ 是 *H* 的特征 值时, $-\lambda$ 也是 *H* 的特征值,因此如果 Hamiltonian 矩阵在复平面 的 左半平面有 *n* 个特征值,则在右半平面也有 *n* 个特征值。假设 Hamiltonian 矩阵在 Re(*s*) < 0 上有 *n* 个特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$,则对

应的特征向量构成一个 $2n \times n$ 维矩阵 $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$,即

$$\boldsymbol{H}\begin{bmatrix}\boldsymbol{X}_1\\\boldsymbol{X}_2\end{bmatrix} = \begin{bmatrix}\boldsymbol{X}_1\\\boldsymbol{X}_2\end{bmatrix}\boldsymbol{Z} \qquad (1.\ 2.\ 92)$$

显然矩阵 Z 的特征值就是 $\lambda_1, \lambda_2, \dots, \lambda_n$,即 Z 是稳定的矩阵。如果上 式中的 X_1 是非奇异矩阵,则 $X = X_2 X_1^{-1}$ 是对称矩阵,并且是 Riccati 代数方程(1.2.90)的解,而且

$$H\begin{bmatrix}I\\X\end{bmatrix} = \begin{bmatrix}I\\X\end{bmatrix}(A - RX)$$
(1.2.93)

如果 X 是 Riccati 方程(1.2.90)的解,并且使矩阵 A - RX 稳 定,则称 X 是 Riccati 方程的稳定化解,并用 X = Ric(H) 表示。

下面再介绍 Riccati 微分方程

 $-\dot{\boldsymbol{P}}(t) = \boldsymbol{P}(t)\boldsymbol{A} + \boldsymbol{A}^{\mathrm{T}}\boldsymbol{P}(t) - \boldsymbol{P}(t)\boldsymbol{R}\boldsymbol{P}(t) + \boldsymbol{Q},\boldsymbol{P}(t_{\mathrm{f}}) = \boldsymbol{M}$ (1.2.94)

及其与 Hamilton 矩阵的关系。定义下列线性方程组

$$\begin{bmatrix} \mathbf{X} \\ \dot{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & -\mathbf{R} \\ -\mathbf{Q} & -\mathbf{A}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$
(1.2.95)

其中 $X, Y \in n \times n$ 维矩阵,并满足边界条件

$$\begin{bmatrix} \boldsymbol{X}(t_{\rm f}) \\ \boldsymbol{Y}(t_{\rm f}) \end{bmatrix} = \begin{bmatrix} \boldsymbol{I} \\ \boldsymbol{M} \end{bmatrix}$$
(1. 2. 96)

则 Riccati 微分方程的解可以由方程组(1.2.95)的解构成,即 $P(t) = Y(t)X^{-1}(t)$ (1.2.97)

对于定常系统,还可以得到用矩阵指数函数描述的 Riccati 微分方 程的解析解。过程如下:

根据 Hamilton 矩阵特征值的性质,如果 H 没有虚轴上的特征 值,则可以利用其特征向量矩阵 U 对矩阵进行下列变换

$$\boldsymbol{U}^{-1}\boldsymbol{H}\boldsymbol{U} = \begin{bmatrix} \boldsymbol{\Lambda}_s & \\ & \boldsymbol{\Lambda}_u \end{bmatrix}$$
(1.2.98)

其中 Λ_s 是由具有负实部的特征值组成的 n 维约当块矩阵(稳定矩阵), Λ_u 是由具有正实部的特征值组成的 n 维约当块矩阵(完全不稳定矩阵)。如果将 U 分解成

$$\boldsymbol{U} = \begin{bmatrix} \boldsymbol{U}_{11} & \boldsymbol{U}_{12} \\ \boldsymbol{U}_{21} & \boldsymbol{U}_{22} \end{bmatrix}$$
(1. 2. 99)

其中 $\begin{bmatrix} U_{11} \\ U_{21} \end{bmatrix}$ 由矩阵 *H* 的所有负实部特征值对应的广义特征向量组

成, $\begin{bmatrix} U_{12} \\ U_{22} \end{bmatrix}$ 由矩阵 *H* 的所有正实部特征值对应的广义特征向量组 成。对微分方程组(1.2.95) 作线性变换

$$\begin{bmatrix} X \\ Y \end{bmatrix} = U \begin{bmatrix} X \\ \hat{Y} \end{bmatrix}$$
(1. 2. 100)

• 30 •

$$\begin{bmatrix} \hat{X} \\ \hat{Y} \\ \hat{Y} \end{bmatrix} = \begin{bmatrix} \Lambda_s & \\ & \Lambda_u \end{bmatrix} \begin{bmatrix} \hat{X} \\ \hat{Y} \end{bmatrix}$$
(1.2.101)

上述方程已经解耦,其解可以表示为

$$\hat{\boldsymbol{X}}(t_{\rm f}) = \mathrm{e}^{\boldsymbol{\Lambda}_{s}(t_{\rm f}-t)} \hat{\boldsymbol{X}}(t) \qquad (1.2.102\mathrm{a})$$

$$\hat{\boldsymbol{Y}}(t_{\rm f}) = \mathrm{e}^{A_u(t_{\rm f}-t)} \hat{\boldsymbol{Y}}(t) \qquad (1.2.102\mathrm{b})$$

因为

$$X = U_{11}\hat{X} + U_{12}\hat{Y}$$
 (1.2.103a)

$$Y = U_{21}X + U_{22}Y$$
 (1.2.103b)

所以当 $t = t_f$ 时得

$$\boldsymbol{I} = \boldsymbol{U}_{11} \hat{\boldsymbol{X}}(t_{\rm f}) + \boldsymbol{U}_{12} \hat{\boldsymbol{Y}}(t_{\rm f}) \qquad (1.2.104a)$$

$$\boldsymbol{M} = \boldsymbol{U}_{21} \hat{\boldsymbol{X}}(t_{\rm f}) + \boldsymbol{U}_{22} \hat{\boldsymbol{Y}}(t_{\rm f}) \qquad (1.2.104 \rm b)$$

并且有

$$\hat{\boldsymbol{Y}}(t_{\mathrm{f}}) = - [\boldsymbol{U}_{22} - \boldsymbol{M}\boldsymbol{U}_{12}]^{-1} [\boldsymbol{U}_{21} - \boldsymbol{M}\boldsymbol{U}_{11}] \hat{\boldsymbol{X}}(t_{\mathrm{f}})$$
(1.2.105)

令

 $G = - [U_{22} - MU_{12}]^{-1}[U_{21} - MU_{11}] \quad (1.2.106)$ 得到原线性方程组(1.2.95)的解

$$\boldsymbol{X}(t) = \begin{bmatrix} \boldsymbol{U}_{11} + \boldsymbol{U}_{12} \mathrm{e}^{-\boldsymbol{\Lambda}_{u}(t_{\mathrm{f}}-t)} \boldsymbol{G} \mathrm{e}^{\boldsymbol{\Lambda}_{s}(t_{\mathrm{f}}-t)} \end{bmatrix} \mathrm{e}^{-\boldsymbol{\Lambda}_{s}(t_{\mathrm{f}}-t)} \boldsymbol{X}(t_{\mathrm{f}})$$
(1.2.107a)

(1.2.107a)

$$\mathbf{Y}(t) = \begin{bmatrix} \mathbf{U}_{21} + \mathbf{U}_{22} \mathrm{e}^{-\Lambda_u(t_{\mathrm{f}}-t)} \mathbf{G} \mathrm{e}^{\Lambda_s(t_{\mathrm{f}}-t)} \end{bmatrix} \mathrm{e}^{-\Lambda_s(t_{\mathrm{f}}-t)} \mathbf{X}(t_{\mathrm{f}})$$
(1.2.107b)

Riccati 方程的解则可以表示为

$$\boldsymbol{P}(t) = \boldsymbol{Y}(t)\boldsymbol{X}^{-1}(t) = \boldsymbol{P}_{1}(t)\boldsymbol{P}_{2}^{-1}(t) \qquad (1.2.108)$$

其中

$$P_{1}(t) = \begin{bmatrix} U_{21} + U_{22} e^{-\Lambda_{u}(t_{f}-t)} G e^{\Lambda_{s}(t_{f}-t)} \end{bmatrix} \quad (1.2.109a)$$
$$P_{2}(t) = \begin{bmatrix} U_{11} + U_{12} e^{-\Lambda_{u}(t_{f}-t)} G e^{\Lambda_{s}(t_{f}-t)} \end{bmatrix} \quad (1.2.109b)$$

1.3 LQG 控制

本节介绍LQG 控制的基本内容。考虑下列线性时变系统的控制问题

 $\dot{\boldsymbol{x}}(t) = \boldsymbol{A}(t)\boldsymbol{x}(t) + \boldsymbol{B}_{1}(t)\boldsymbol{w}(t) + \boldsymbol{B}_{2}(t)\boldsymbol{u}(t), \boldsymbol{x}(0) = \boldsymbol{0}$

(1.3.1a)

 $\boldsymbol{z}(t) = \boldsymbol{C}_{1}(t)\boldsymbol{x}(t) + \boldsymbol{D}_{12}(t)\boldsymbol{u}(t) \qquad (1.3.1b)$

 $\mathbf{y}(t) = \mathbf{C}_2(t)\mathbf{x}(t) + \mathbf{D}_{21}(t)\mathbf{w}(t)$ (1.3.1c)

其中输入向量 $u \in \mathbb{R}^{m}$,干扰向量 $w \in \mathbb{R}^{l}$,量测向量 $y \in \mathbb{R}^{q}$ (即控制 器的输入),目标向量 $z \in \mathbb{R}^{p}$,状态向量 $x \in \mathbb{R}^{n}$,并假设 $p \ge m, l \ge q$,且 $D_{12}(t)$ 和 $D_{21}(t)$ 满足

 $\boldsymbol{D}_{12}^{\mathrm{T}}(t)\boldsymbol{D}_{12}(t) = \boldsymbol{I}_{m}$ (1. 3. 2a)

 $\boldsymbol{D}_{21}(t)\boldsymbol{D}_{21}^{\mathrm{T}}(t) = \boldsymbol{I}_{q} \qquad (1.3.2\mathrm{b})$

控制系统设计的目的是寻找线性因果控制器 $u = \mathcal{K}y$,使得闭环 系统从 w 到 z 的映射的 2- 范数极小,即 \mathcal{R}_{aw} 的 2- 范数极小,而

$$\|\mathscr{R}_{zw}\|_{2,[0,t_{\mathrm{f}}]} = E\left\{\frac{1}{T}\int_{0}^{t_{\mathrm{f}}} \mathbf{z}^{\mathrm{T}}\mathbf{z}\mathrm{d}t\right\}^{\frac{1}{2}}$$
(1.3.3)

所以问题就是寻找当w为单位强度的白噪声时,使式(1.3.3)最小的控制器。式中的 $E(\cdot)$ 表示取均值,且 $T = t_f$ 。

回顾前面介绍过的带有观测器的输出反馈控制问题,LQG 控制问题与该问题的差别主要在于外界干扰信号是随机信号。因此可以参考求解该问题的思路,通过下面的步骤来解决^[1]。

1.3.1 全信息控制

首先考虑全信息控制问题,所有的量测反馈控制器同时也是 全信息(full-information)控制器,这是因为

$$\boldsymbol{u} = \mathcal{H}\boldsymbol{y} = \begin{bmatrix} \mathcal{H}\boldsymbol{C}_2 & \mathcal{H}\boldsymbol{D}_{21} \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{w} \end{bmatrix}$$
(1.3.4)

所以我们首先研究可以极小化 $\| \mathscr{R}_{zw} \|_{2,[0,t_c]}$ 的全信息控制器

$$\boldsymbol{u} = \begin{bmatrix} \mathscr{H}_1 & \mathscr{H}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{w} \end{bmatrix}$$
(1.3.5)

如果直接考虑系统(1.3.1),则式(1.3.3)式中的z包含u与x之间 的交叉项,这样会使控制器的结构比较复杂,因此我们考虑下列简 化的情况

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}(t)\boldsymbol{x}(t) + \boldsymbol{B}_1(t)\boldsymbol{w}(t) + \boldsymbol{B}_2(t)\boldsymbol{u}(t), \boldsymbol{x}(t_0) = \boldsymbol{0}$$
(1.3.6a)

$$\mathbf{z}(t) = \begin{bmatrix} \mathbf{C}(t)\mathbf{x}(t) \\ \mathbf{D}(t)\mathbf{u}(t) \end{bmatrix}$$
(1. 3. 6b)

其中 $D^{T}D \equiv I$,此时有 $z^{T}z = x^{T}C^{T}(t)C(t)x + u^{T}u$ 。因为一般情况下 都可以通过对控制变量的变换将式(1.3.1)化为上述形式,所以 这样的简化并不失一般性。此时目标函数可表示为

$$\|\mathscr{R}_{zw}\|_{2,[0,t_{\mathrm{f}}]} = E\left\{\frac{1}{T}\int_{0}^{t_{\mathrm{f}}} [\mathbf{x}^{\mathrm{T}}\mathbf{C}^{\mathrm{T}}(t)\mathbf{C}(t)\mathbf{x} + \mathbf{u}^{\mathrm{T}}\mathbf{u}]\mathrm{d}t\right\}^{\frac{1}{2}}$$
(1.3.7)

而相应的控制器为

$$\boldsymbol{u} = \begin{bmatrix} -\boldsymbol{B}_{2}^{\mathrm{T}}(t) & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{w} \end{bmatrix} = -\boldsymbol{B}_{2}^{\mathrm{T}}(t)\boldsymbol{P}(t)\boldsymbol{x} \qquad (1.3.8)$$

其中 P(t) 是下列 Riccati 微分方程的解

$$-\overset{*}{\boldsymbol{P}}(t) = \boldsymbol{P}(t)\boldsymbol{A}(t) + \boldsymbol{A}^{\mathrm{T}}(t)\boldsymbol{P}(t) -$$
$$\boldsymbol{P}(t)\boldsymbol{B}_{2}(t)\boldsymbol{B}_{2}^{\mathrm{T}}(t)\boldsymbol{P} + \boldsymbol{C}^{\mathrm{T}}(t)\boldsymbol{C}(t), \boldsymbol{P}(t_{\mathrm{f}}) = \boldsymbol{0} \qquad (1.3.9)$$

对于定常系统,可以考虑无限区间上(即 $t_f \rightarrow \infty$ 时)的控制问题。设式(1.3.1)中的系数矩阵均为定常矩阵,并且(A, B_2)是可稳定的,(A,C)在虚轴上没有不可观模态,则其最优控制器为

$$\boldsymbol{u} = -\boldsymbol{B}_{2}^{\mathrm{T}}\boldsymbol{P}\boldsymbol{x} \qquad (1.3.10)$$

其中 P 是 Riccati 代数方程的解

 $PA + A^{T}P - PB_{2}B_{2}^{T}P + C^{T}C = 0 \qquad (1.3.11)$ 1.3.2 Kalman 滤波

对于实际系统,一般情况下无法直接测量到系统全部的状态 信息和外界干扰信号。在前面的章节中,介绍过利用量测到的系统 输出信息借助状态观测器估计系统的全部状态并用于反馈控制。 这里仍然需要设法根据量测数据 y 来估计系统的状态,由于外界 对系统的干扰是随机信号,因此利用 Kalman 滤波器对状态进行 最优估计。Kalman 滤波器的基本概念简介如下:

对于线性系统

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{w}(t), \quad \mathbf{x}(0) = \mathbf{0} \ (1.3.12a)$$
$$\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{v}(t) \qquad (1.3.12b)$$

z(t) = L(t)x(t) (1.3.12c)

其中 $D^{\mathsf{T}}D \equiv I_{\circ}$ 通过设计滤波器 \mathscr{S} 来获得对 z = Lx 的最优估计 $z = \mathscr{S}y$,并且要求极小化下列目标函数

$$\|\mathscr{R}\|_{2,[0,t_{\mathrm{f}}]} = E\left\{\frac{1}{T}\int_{0}^{t_{\mathrm{f}}} (\hat{\boldsymbol{z}} - \boldsymbol{L}\boldsymbol{x})^{\mathrm{T}} (\hat{\boldsymbol{z}} - \boldsymbol{L}\boldsymbol{x}) \mathrm{d}t\right\}^{\frac{1}{2}}$$
(1.3.13)

滤波器的具体形式为

 $\hat{\boldsymbol{x}}(t) = \boldsymbol{A}(t)\,\hat{\boldsymbol{x}}(t) + \boldsymbol{Q}(t)\boldsymbol{C}^{\mathrm{T}}(t)[\boldsymbol{y}(t) - \boldsymbol{C}(t)\,\hat{\boldsymbol{x}}(t)]$

(1.3.14a)

 $\hat{z}(t) = L(t) \hat{x}(t)$ (1.3.14b)

其中Q(t)是Riccati 微分方程的解

$$\dot{\boldsymbol{Q}}(t) = \boldsymbol{Q}(t)\boldsymbol{A}^{\mathrm{T}}(t) + \boldsymbol{A}(t)\boldsymbol{Q}(t) - \\ \boldsymbol{Q}(t)\boldsymbol{C}^{\mathrm{T}}(t)\boldsymbol{C}(t)\boldsymbol{Q}(t) + \boldsymbol{B}(t)\boldsymbol{B}^{\mathrm{T}}(t),\boldsymbol{Q}(0) = \boldsymbol{0}$$

(1.3.15)

显然,上述 Riccati 方程与 L(t) 无关, $L(t)\hat{x}(t)$ 是对 L(t)x(t) 的最 优估计,而 $\hat{x}(t)$ 则是对状态 x(t) 的最优估计。矩阵 $Q(t)C^{T}(t)$ 是 Kalman 滤波器的增益, $y(t) - C(t)\hat{x}(t)$ 称为"新息" (innovations)。

现在考虑定常系统无限区间上的滤波问题,当 $t_f \rightarrow \infty$ 时 Kalman 滤波器的形式为

 $\dot{\hat{\boldsymbol{x}}}(t) = A\,\hat{\boldsymbol{x}}(t) + \boldsymbol{Q}\boldsymbol{C}^{\mathrm{T}}[\boldsymbol{y}(t) - \boldsymbol{C}\,\hat{\boldsymbol{x}}(t)] \quad (1.3.16a)$ $\hat{\boldsymbol{z}}(t) = \boldsymbol{L}\,\hat{\boldsymbol{x}}(t) \quad (1.3.16b)$

其中Q是代数 Riccati 方程的解

 $QA^{T} + AQ - QC^{T}CQ + BB^{T} = 0$ (1.3.17) 因为要求 $A - QC^{T}C$ 的特征值具有负实部,所以只有当(A,C) 可检 测,(A,B) 在虚轴上没有不可控模态时才存在满足要求的解。

1.3.3 LQG 控制

基于上述知识,现在可以解决本节开始所提出的LQG 控制问题,其最优控制器为

 $\hat{\mathbf{x}}(t) = \mathbf{A}(t)\,\hat{\mathbf{x}}(t) + \mathbf{H}(t)[\mathbf{y}(t) - \mathbf{C}_2(t)\,\hat{\mathbf{x}}(t)] + \mathbf{B}_2(t)\mathbf{u}(t)$ (1. 3. 18a)

 $u(t) = -F(t)\hat{x}(t)$ (1.3.18b)

其中 $F = D_{12}^{T}C_1 + B_2^{T}X$, $H = B_1D_{21}^{T} + YC_2^{T}$, 而矩阵 X 和 Y 则分别是 下列 Riccati 微分方程的解

$$-\dot{X} = X\tilde{A} + \tilde{A}^{\mathrm{T}}X - XB_{2}B_{2}^{\mathrm{T}}X + \tilde{C}^{\mathrm{T}}\tilde{C}, X(t_{\mathrm{f}}) = 0$$

(1.3.19)

 $\dot{\mathbf{Y}} = \bar{\mathbf{A}} \, \mathbf{Y} + \mathbf{Y} \bar{\mathbf{A}}^{\mathrm{T}} - \mathbf{Y} \mathbf{C}_{2}^{\mathrm{T}} \mathbf{C}_{2} \mathbf{Y} + \overline{\mathbf{B}} \overline{\mathbf{B}}^{\mathrm{T}}, \mathbf{Y}(0) = \mathbf{0} \quad (1.3.20)$

上式中

$$\widetilde{\boldsymbol{A}} = \boldsymbol{A} - \boldsymbol{B}_2 \boldsymbol{D}_{12}^{\mathrm{T}} \boldsymbol{C}_1 \qquad (1.3.21\mathrm{a})$$

$$\widetilde{\boldsymbol{C}}^{\mathrm{T}}\widetilde{\boldsymbol{C}} = \boldsymbol{C}_{1}^{\mathrm{T}}(\boldsymbol{I} - \boldsymbol{D}_{12}\boldsymbol{D}_{12}^{\mathrm{T}})\boldsymbol{C}_{1} \qquad (1. \ 3. \ 21 \mathrm{b})$$

$$\bar{\boldsymbol{A}} = \boldsymbol{A} - \boldsymbol{B}_1 \boldsymbol{D}_{21}^{\mathrm{T}} \boldsymbol{C}_2 \qquad (1. \ 3. \ 22a)$$

$$\overline{\boldsymbol{B}\boldsymbol{B}}^{\mathrm{T}} = \boldsymbol{B}_{1}(\boldsymbol{I} - \boldsymbol{D}_{21}^{\mathrm{T}}\boldsymbol{D}_{21})\boldsymbol{B}_{1}^{\mathrm{T}}$$
(1. 3. 22b)

对于定常系统无限时间域的 LQG 控制问题,在满足 (A, B_2) 可稳 定、 (A, C_2) 可检测,并且对所有 $\omega \in R$ 都存在

$$\operatorname{rank} \begin{bmatrix} \mathbf{A} - j\omega \mathbf{I} & \mathbf{B}_2 \\ \mathbf{C}_1 & \mathbf{D}_{12} \end{bmatrix} = n + m \qquad (1.3.23a)$$

$$\operatorname{rank}\begin{bmatrix} \mathbf{A} - \mathbf{j}\omega\mathbf{I} & \mathbf{B}_{1} \\ \mathbf{C}_{2} & \mathbf{D}_{12} \end{bmatrix} = n + q \qquad (1.3.23b)$$

时,最优量测反馈控制器可表示为

$$\hat{\boldsymbol{x}}(t) = A\,\hat{\boldsymbol{x}}(t) + \boldsymbol{H}[\boldsymbol{y}(t) - \boldsymbol{C}_{2}\,\hat{\boldsymbol{x}}(t)] + \boldsymbol{B}_{2}\boldsymbol{u}(t)$$

(1.3.24a)

$$\boldsymbol{u}(t) = -\boldsymbol{F}\,\hat{\boldsymbol{x}}\,(t) \qquad (1.3.24\mathrm{b})$$

此时的 X, Y 是下列代数 Riccati 方程的解

$$\boldsymbol{X}\tilde{\boldsymbol{A}} + \tilde{\boldsymbol{A}}^{\mathrm{T}}\boldsymbol{X} - \boldsymbol{X}\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}}\boldsymbol{X} + \tilde{\boldsymbol{C}}^{\mathrm{T}}\tilde{\boldsymbol{C}} = \boldsymbol{0} \qquad (1.3.25)$$

 $\bar{\boldsymbol{A}}\boldsymbol{Y} + \bar{\boldsymbol{A}}^{\mathrm{T}}\boldsymbol{Y} - \boldsymbol{Y}\boldsymbol{C}_{2}^{\mathrm{T}}\boldsymbol{C}_{2}\boldsymbol{Y} + \bar{\boldsymbol{B}}\ \bar{\boldsymbol{B}}^{\mathrm{T}} = \boldsymbol{0} \qquad (1.3.26)$

关于 LQG 控制问题更详细的介绍可以参考专著 1,2 中的有关章 节。

1.4 变分法基本概念

变分法是研究泛函极值的一种经典方法,在力学、光学、电磁 学和自动控制等学科中有着广泛的应用。本节将介绍变分法的基 本概念以便理解后续各章的内容,本节内容取自参考文献 29 ~ 31。

首先介绍泛函极小的概念,泛函规定了数J 与容许函数x(t)

的对应关系,如果泛函 J[x(t)] 在任何一条与 $x^{\#}(t)$ 接近的曲线 上的值不小于 $J[x^{\#}(t)]$,即 $J[x(t)] - J[x^{\#}(t)] \ge 0$,则称此时泛 函在曲线 $x^{\#}(t)$ 上达到极小值。

在求函数极值时导数及微分起着重要作用,而研究泛函极值 时泛函的微分(常称变分)则起着类似的作用,以至将求泛函极小 值 和极大值的问题都叫做变分问题,求泛函极值的方法则称为变 分法。

泛函宗量 x(t) 的变分 $\delta x(t)$ 是指两函数之差,即

 $\delta x(t) = x(t) - x_0(t) \tag{1.4.1}$

连续泛函 J[x(t)] 的增量可以表示为

 $\Delta J = J[x(t) + \delta x(t)] - J[x(t)] =$

 $L[x(t),\delta x(t)] + r[x(t),\delta x(t)]$ (1.4.2)

其中 $L[x(t), \delta x(t)]$ 是关于 $\delta x(t)$ 的线性连续泛函, $r[x(t), \delta x(t)]$ 是关于 $\delta x(t)$ 的高阶无穷小,称 $L[x(t), \delta x(t)]$ 为泛函的变分,并 记为

 $\delta J = L[x(t), \delta x(t)] \tag{1.4.3}$

显 然泛函的变分就是泛函增量的线性主部。当一个泛函具有变分 时,则称该泛函是可微的。

现在给出泛函极值的必要条件。令 $x^{\#}(t)$ 是极值曲线,与 $x^{\#}(t)$ 接近的容许曲线对于所有 $t \in [t_0, t_1]$ 可表示为

 $x(t) = x^{\#}(t) + a\eta(t)$ (1.4.4) 其中 $\eta(t)$ 是x(t)的变分, α 是一个很小的数。在极值曲线 $x^{\#}(t)$ 上 必然有

$$\frac{\partial}{\partial \alpha} J[x^{\#}(t) + \alpha \eta(t)]\Big|_{\alpha=0} = 0 \qquad (1.4.5)$$

上式为泛函极值的必要条件,它和 $\eta(t)$ 的选择无关。由上式得到的解可能是极大值,也可能是极小值或驻点。而泛函极小值在 $\alpha = 0$ 处应满足 $\partial^2 J/\partial \alpha^2 > 0$ 。由于

$$\delta J = \frac{\partial}{\partial \alpha} J \left[x^{\#}(t) + \alpha \eta(t) \right] \Big|_{\alpha = 0}$$
(1.4.6)

所以泛函极值的必要条件也可以写成

$$\delta J = 0 \tag{1.4.7}$$

现在来看一个典型的泛函极值问题:使泛函

$$E(x) = \int_{0}^{t_{\rm f}} L(t, x(t), \dot{x}(t)) dt \qquad (1.4.8)$$

在固定端点条件

 $x(0) = \alpha, \quad x(t_{\rm f}) = \beta$ (1.4.9)

约束下取极小的变分问题称为 Lagrange 问题。该泛函极值的必要 条件可表示为

$$\frac{\partial L}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}} = 0, (t_0 < t < t_\mathrm{f}) \qquad (1.4.10a)$$

 $x(0) = \alpha, \quad x(t_{\rm f}) = \beta$ (1.4.10b)

其中式(1.4.10a)称为 Euler-Lagrange 方程,一般来讲上述条件 只是极值存在的必要条件而非充分条件。在许多情况下,根据问题 的物理意义可以判定极值是否存在,而严格的判断极值存在与否 的条件则是比较复杂的。满足式(1.4.10)的曲线 $x^{\pm}(t,C_1,C_2)$ 称 为极值曲线,只有在极值曲线上泛函才能达到极值。另外,容许函 数 x(t)的约束条件(1.4.9)也可以直接从下列泛函极值问题中导 出

$$J(x) = \int_{0}^{t_{\mathrm{f}}} L(t, x(t), \dot{x}(t)) \mathrm{d}t - \left[\frac{\partial L}{\partial \dot{x}}(x - x_{\mathrm{B}})\right]_{t_{0}}^{t_{\mathrm{f}}}$$

$$(1.4.11)$$

其中

 $x_B(0) = \alpha, \quad x_B(t_f) = \beta$ (1.4.12)

这一点由 $\delta J(x) = 0$ 经过简单的推导就可以得到。极值曲线 $x^{\#}(t)$ 满足

$$\frac{\partial L}{\partial x^{\#}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}^{\#}} = 0, (0 < t < t_{\mathrm{f}}) \qquad (1.4.13a)$$

及

$$x^{\#}(t_0) = x_B(t_0), \quad x^{\#}(t_f) = x_B(t_f) \quad (1.4.13b)$$

当泛函宗量为向量函数时,泛函

$$J = \int_{0}^{t_{\mathrm{f}}} L(t, \boldsymbol{x}(t), \dot{\boldsymbol{x}}(t)) \mathrm{d}t \qquad (1.4.14)$$

极值存在的必要条件为

$$\frac{\partial L}{\partial \mathbf{x}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{\mathbf{x}}} = 0 \qquad (1.4.15a)$$

$$\delta \mathbf{x}^{\mathrm{T}} \frac{\partial L}{\partial \dot{\mathbf{x}}} \Big|_{0}^{t_{\mathrm{f}}} = 0 \qquad (1.4.15\mathrm{b})$$

注意式(1.4.15b)与(1.4.10b)的区别,这个问题中对x(t)两端的 取值没有约束。式(1.4.15b)通常称为横截条件。

下面介绍一类特殊的依赖于两个函数的泛函极值问题,即泛 函极值问题(1.4.8)的正则形式。首先定义 x(t)的共轭变量 (conjugate variable)。

$$y(t) = \frac{\partial L}{\partial \dot{x}} \tag{1.4.16}$$

再定义 Hamilton 函数

 $H(t,x,y) = y\dot{x} - L(t,x,\dot{x})$ (1.4.17) 其中 \dot{x} 认为是可以由式(1.4.13) 确定的 t,x,y 的函数。而泛函式 (1.4.8) 可以写成

$$I(x,y) = \int_{0}^{t_{f}} \{y\dot{x} - H(t,x,y)\} dt \qquad (1.4.18)$$

泛函 I(x,y) 的宗量函数 x 和 y 相互独立,其 Euler-Lagrange 方程为

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\partial H}{\partial y} \tag{1.4.19a}$$

$$-\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\partial H}{\partial x} \tag{1.4.19b}$$

上述方程也称为 Hamilton 正则方程, 是分析力学中重要的方程^[28]。引入与式(1.4.11)一致的边界条件,得到下列泛函

$$I(x,y) = \int_0^{t_{\mathrm{f}}} \{y\dot{x} - H(t,x,y)\} \mathrm{d}t - [y(x-x_B)]_0^{t_{\mathrm{f}}}$$

这样就可以自然导出边界条件。泛函式(1.4.20)的驻值曲线 x^* , v^* 是下列边值问题的解

$$\frac{\mathrm{d}x^*}{\mathrm{d}t} = \frac{\partial H}{\partial y^*}, (t_0 < t < t_\mathrm{f}) \tag{1.4.21}$$

$$-\frac{\mathrm{d}y^*}{\mathrm{d}t} = \frac{\partial H}{\partial x^*}, (t_0 < t < t_\mathrm{f}) \tag{1.4.22}$$

$$x^*(0) = x_B(0), x^*(t_f) = x_B(t_f)$$
 (1.4.23)

泛函式(1.4.20)的另一种形式为

$$I(x,y) = \int_{0}^{t_{f}} \{-\dot{y}x - H(t,x,y)\} dt - [y(x_{B})]_{0}^{t_{f}}$$
(1.4.24)

根据式(1.4.20) 定义泛函

$$J(x) = I(x, y(x))$$
(1.4.25)

其中 y(x) 由

$$\dot{x} = \frac{\partial H}{\partial y} \tag{1.4.26}$$

确定。根据式(1.4.24) 定义泛函

$$G(y) = I(x(y), x)$$
 (1.4.27)

其中x(y)由

$$-\dot{y} = \frac{\partial H}{\partial x} \tag{1.4.28}$$

确定。如果 H(t,x,y) 是 x 的凹函数, y 的凸函数,则泛函 I(x,y) 的驻值 $I(x^*,y^*)$ 满足

(1.4.20)

 $G(y) \leqslant G(y^*) = I(x^*, y^*) = J(x^*) \leqslant J(x)$

(1.4.29)

而 G(y) 则称为 J(x) 的互补 (complementary) 泛函^[31]。

1.5 常微分方程和差分方程特征值问题

本书后续章节中介绍并利用了 Hamilton 微分方程和差分方 程特征值问题的有关定理和结论,作为基础,本节对常微分方程和 差 分方程特征值问题的基本概念作简单介绍,本节内容主要取自 参考文献 32,33。

A: 常微分方程边值问题

考虑一阶微分方程组的边值问题

 $\dot{\mathbf{y}}(t) - \mathbf{A}(t)\mathbf{y}(t) = \mathbf{f}(t), t \in [a,b]$ (1.5.1a) 其边界条件为

 $\boldsymbol{B}_{a}\boldsymbol{y}(a) + \boldsymbol{B}_{b}\boldsymbol{y}(b) = \boldsymbol{r} \qquad (1.5.1b)$

其中矩阵 $A(t) \in \mathbb{R}^{n \times n}$,常矩阵 $B_a \in \mathbb{R}^{n \times n}$, $B_b \in \mathbb{R}^{n \times n}$ 。如果 $B_a = I$ 且 $B_b = 0$,则边值问题成为通常的初值问题。

对于2维的情况,若令

$$\boldsymbol{A}(t) = \begin{bmatrix} 0, & \frac{1}{p(x)} \\ -q(x) & 0 \end{bmatrix}$$
(1.5.2a)

$$\mathbf{y} = \begin{cases} u \\ p(x)\dot{u} \end{cases}^{\mathrm{T}} \tag{1.5.2b}$$

$$f(t) = \begin{cases} 0\\g(t) \end{cases}$$
(1.5.2c)

$$\boldsymbol{B}_{a} = \begin{bmatrix} \alpha_{1} & \alpha_{2} \\ 0 & 0 \end{bmatrix}$$
(1.5.3a)

则边值问题式(1.5.1) 就是 Sturm 边值问题。

B: 常微分方程特征值问题

考虑一阶微分方程组

 $\dot{\mathbf{y}}(t) - A(t,\lambda)\mathbf{y}(t) = \mathbf{0}, t \in [a,b]$ (1.5.4a) 其边界条件为

 $\boldsymbol{B}_{a}(\lambda)\boldsymbol{y}(a) + \boldsymbol{B}_{b}(\lambda)\boldsymbol{y}(b) = \boldsymbol{0} \qquad (1.5.4b)$

其中 $A(t,\lambda) \in \mathbb{R}^{n \times n}$, $B_a(\lambda) \in \mathbb{R}^{n \times n}$, $B_b(\lambda) \in \mathbb{R}^{n \times n}$ 在 $a \leq t \leq b$ 上 关于 λ 是解析的, 且 rank($B_a(\lambda)$, $B_b(\lambda)$) = n 对所有 λ 都成立。若 λ 使齐次边值问题(1.5.1) 具有非零解 y(t),则称是该边值问题的 特征值,对应的解 $y(t) = y(t,\lambda)$ 则称为关于 λ 的特征函数。许多常 微分方程边值问题中的边界条件常常具有分离或部分分离的形 式,例如

$$\boldsymbol{B}_{a}(\lambda) = \begin{bmatrix} \boldsymbol{C}_{a}(\lambda) \\ \boldsymbol{C}_{ba}(\lambda) \end{bmatrix}, \quad \boldsymbol{B}_{b}(\lambda) = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{C}_{b}(\lambda) \end{bmatrix} \quad (1.5.5a,b)$$

C: Sturm-Liouvill 微分方程特征值问题

考虑下列二阶常微分方程的边值问题

$$\frac{\mathrm{d}}{\mathrm{d}t}[p(t)\dot{u}] + q(t)u + \lambda r(t)u = 0, \quad t \in [a,b]$$

(1.5.6a)

其边界条件为

$$\alpha_1 u(a) + \alpha_2 \dot{u}(a) = 0$$
 (1.5.6b)

 $\beta_1 u(b) + \beta_2 \dot{u}(b) = 0 \qquad (1.5.6c)$

其中 p(t),q(t),r(t) 都是定义在区间[a,b]上的实值连续函数; a_i , β_i 均为实数(i = 1,2),对于这个特征值问题, λ 是实数。此特征值 问题称为 Sturm-Liouvill 特征值问题

当 Sturm-Liouvill 条件成立,即 $p(t) \in C^1[a,b], q(t), r(t) \in$

 $C[a,b]; p(t) > 0, r(t) > 0, t \in [a,b]; a_1^2 + a_2^2 > 0, \beta_1^2 + \beta_2^2 > 0$ 时, 有下面的基本定理:

1. 对应于每个特征值的特征函数除了一个常数因子外是惟一 确定的。

2. 所有的特征值都是实数

3. 特征值存在定理: 边值问题(1.5.3) 有可数无穷多个特征 $\lambda_n (n = 0, 1, 2, \dots)$,并可按其大小排列成

 $\lambda_0 < \lambda_1 < \cdots < \lambda_n < \cdots \rightarrow +\infty \qquad (1.5.7)$

而且存在常数 c, C > 0,使对充分大的 n 有

$$cn^2 \leqslant \lambda_n \leqslant Cn^2$$
 (1.5.8)

且对应于 λ_n 的特征函数 $u_n(t)$ ($n = 0, 1, 2, \dots$) 在区间(a, b) 内恰好 有n 个零点。

D: Sturm-Liouvill 差分方程特征值问题

Sturm-Liouvill 差分方程具有下列形式

 $\Delta(p_{k-1}\Delta y_{k-1}) + (q_k + \lambda r_k)y_k = 0$ (1.5.9a) 边界条件为

$$a_0 y_0 + a_1 y_1 = 0 \tag{1.5.9b}$$

$$\alpha_N y_N + \alpha_{N+1} y_{N+1} = 0 \qquad (1.5.9c)$$

其中 Δ 为差分算子, $k \in [1, N - 1]$, 且 λ 与 k 无关, 而 $\alpha_0, \alpha_1, \alpha_N$, α_{N+1} 则是给定的常数。当 p_k, q_k, r_k 为实数时,特征值 λ 亦为实数。若 λ_m 和 λ_n 是两个不同的特征值,并记 $\phi_{m,k}$ 和 $\phi_{n,k}$ 是相对应的特征函 数,则有

$$\sum_{k=1}^{N} r_k \phi_{m,k} \phi_{n,k} = 0 \qquad (1.5.10)$$

若取 $r_k > 0$,则上式表明特征函数 { $\sqrt{r_k \phi_{m,k}}$ } ($m = 1, 2, \dots, N$) 是 相互正交的,也称函数 $\phi_{m,k}$ 是加权正交的,加权系数为 r_k 。

参考文献

- 1 Green M , Limbeer D J N. Linear Robust Control. New Jersey: Prentice Hall, 1995
- 2 Burl J B. Linear Optimal Control −H₂ and H_∞ Methods. California: Addison-Wesley Longman, 1998
- 3 解学书,钟宜生. H.。控制理论. 北京:清华大学出版社,1994
- 4 申铁龙. H_∞控制理论及应用. 北京:清华大学出版社,1996
- 5 吴敏,桂卫华.现代鲁棒控制.长沙:中南工业大学出版社,1998
- 6 Zhou K M, Doyle J C, Glover K. Robust and Optimal Control. New Jersey: Prentice Hall, 1996
- 7 Francis B A. A Course in H_∞ Control Theory. New York: Spring-Verlag,1987
- 8 Kwakernaak H. Robust control and H_∞ optimization a tutorial paper. Automatica, 1993,29(2): 255~273
- 9 Mehrmann V, Xu H G. Numerical methods in control. Journal of Computational and Applied Mathematics, 2000,123: 371~394
- 10 Lin W W, Wang C S, Xu Q F. Numerical computation of the minimal H_∞ norm of the discrete-time output feedback control problem. SIAM Journal on Numerical Analysis, 2000,38(2): 515~547
- 11 薛定宇.控制系统计算机辅助设计-MATLAB语言及应用.北京:清华 大学出版社,1996
- 12 Basar T, Bernhard P. H_∞-optimal Control and Related Minimax Design Problems. Boston: Birkhauser,1995
- 13 Boyd S, Ghaoui L E, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM,1994
- 14 Boyd S, Balakrishnan V, Kabamba P. A bisection method for computing the H_{∞} norm of a transfer matrix and related problems. Mathematics of Control Signals and Systems, 1989,2: 207~219
- 15 胡庭姝, 陈力. 一种新的 H_∞优化方法: 梯度方法. 自动化学报,1996,

22(2): 145~153

- 16 Gahinet P, Laub A J. Numerically reliable computation of optimal performance in singular H_∞ control. SIAM Journal on Control and Optimization, 1997,35(5): 1690~1710
- 17 Subrahmanyam M B. Synthesis of finite-interval H_{∞} controller by state-space methods. Journal of Guidance Control and Dynamics, 1990,13: $624 \sim 629$
- 18 Imae J, Wanyoike G. H_∞ norm computation for LTV systems using nonlinear optimal control algorithms. International Journal of Control, 1996,63(1): 161~182
- 19 Zhong W X, Howson W P, Williams F W. H_∞ control state feedback and Rayleigh quotient. Computer Methods in Applied Mechanics and Engineering, 2001,191: 489~501
- 20 Zhong W X, Williams F W. H_∞ filtering with secure eigenvalue calculation and precise integration. International Journal for Numerical Methods in Engineering, 1999,46: 1017~1030
- 21 钟万勰. H_∞状态反馈与瑞利商精细积分. 计算力学学报, 1998, 15(4):
 1~8
- 22 Zhong W X. Variational Method and Computation for H_∞ Control. Applied Mathematics and Mechanics, 2000,21(12): 1407~1416
- 23 Kratz W. An oscillation theorem for self-adjoint differential systems and the Rayleigh principle for quadratic functionals. Journal of the London Mathematical Society, 1995,51: 401~416
- 24 Boher M. Discrete Linear Hamiltonian Eigenvalue Problems. Computers & Mathematics with Applications, 1998,36: 179~192
- 25 Bittanti S, Laub A J, Willems J C. The Riccati Equation. Heidelberg: Springer Verlag, 1991
- 26 Choi C H, Laub A J. Efficient matrix-valued algorithms for solving stiff DREs. IEEE Transactions on Automatic Control, 1990, 35: 770~ 776
- 27 钟万勰,欧阳华江,邓子辰.计算结构力学与最优控制.大连.大连理

工大学出版社,1993

- 28 钟万勰.应用力学对偶体系.北京:科学出版社,2002
- 29 林畛. 变分法与最优控制. 哈尔滨:哈尔滨工业大学出版社,1987
- 30 艾利斯哥尔兹. 变分法. 北京:人民教育出版社,1958
- 31 Arthurs A M. Complementary Variational Principles. Oxford: Clarendon Press, 1980
- 32 邓宗琦.常微分方程边值问题和 Sturm 比较理论引论.武汉.华中师范 大学出版社,1990
- 33 尤秉礼. 常微分方程补充教程. 北京:人民教育出版社,1981

第二章 离散系统 H_∞全信息控制

全信息(full-information)控制是指受控系统的状态及外界干扰信号都可用于反馈的控制,即控制器的形式为 $u = K[x^T, w^T]^{[1][2]}$ 。 H_{∞} 控制的目的是极小化闭环系统从干扰输入到参考输出的 H_{∞} 范数。对于随机干扰输入信号,系统的性能指标J(v,w)成为随机变量,对性能指标的极小化则成为对其期望值E[J(v, w)]的极小化。为便于表述,本书中的讨论将基于干扰输入属于平方可积信号集合的前提(即能量有限)。

本章将首先简要介绍离散系统 H_{∞} 全信息控制的基本概念和 基本理论;基于 H_{∞} 控制理论进行实际控制系统的设计时需要解 决 的一个基本问题是确定系统的最优 H_{∞} 性能指标 γ_{opt} ,即最优 H_{∞} 诱导范数。 γ_{opt} 与 Riccati 差分方程解的存在性有密切的关系, 而 Riccati 方程的解又可以由 Hamilton 差分方程的解构造。本章还 将 通过建立 γ_{opt} 与 Hamilton 差分系统特征值问题之间的联系,给 出计算 γ_{opt} 的方法。

2.1 离散 H_{∞} 全信息控制

考虑如下线性时变系统

 $\boldsymbol{x}_{k+1} = \boldsymbol{A}_k \boldsymbol{x}_k + \boldsymbol{B}_k \boldsymbol{u}_k + \boldsymbol{D}_k \boldsymbol{w}_k, \quad \boldsymbol{x}_0 = \boldsymbol{0} \qquad (2.1.1)$

 $\boldsymbol{z}_{k} = \boldsymbol{H}_{k}\boldsymbol{x}_{k} + \boldsymbol{N}_{k}\boldsymbol{u}_{k} \qquad (2.1.2)$

其中 $k \in [0, N-1]$,状态向量 $x_k \in \mathbb{R}^n$,干扰向量 $w_k \in \mathbb{R}^l$,控制向 量 $u_k \in \mathbb{R}^m$,输出向量 $z_k \in \mathbb{R}^p \circ A_k, B_k, D_k, H_k \supset N_k$ 均为具有恰当维 数的矩阵, $N_k^{\mathsf{T}}[H_k \ N_k] = [0 I]$,并令 $H_k^{\mathsf{T}}H_k = Q_k$ 。

最优 H_∞ 控制是指确定控制序列 u^{*} 使得

 $\gamma_{\text{opt}} := \inf_{\boldsymbol{u}} \| \mathscr{G}_{zw}(\boldsymbol{u}) \|_{[0,N-1]} = \| \mathscr{G}_{zw}(\boldsymbol{u}^*) \|_{[0,N-1]}$ (2.1.3)

上式中的 γ_{opt} 就是系统的最优 H_{∞} 诱导范数,也称为最优 H_{∞} 性能指标^[1]。另外,上式中

$$\|\mathscr{G}_{zw}(\boldsymbol{u})\|_{[0,N-1]} := \sup_{\boldsymbol{w}} \frac{\|\mathscr{G}_{zw}(\boldsymbol{u})\|_{2}}{\|\boldsymbol{w}\|_{2}} \qquad (2.1.4)$$

其中

$$\|\mathscr{G}_{zw}(\boldsymbol{u})\|_{2} = \left(\frac{1}{2}\sum_{k=0}^{N-1}\boldsymbol{z}_{k}^{\mathsf{T}}\boldsymbol{z}_{k} + \frac{1}{2}\boldsymbol{x}_{N}^{\mathsf{T}}\boldsymbol{\mathcal{Q}}_{\mathsf{f}}\boldsymbol{x}_{N}\right)^{\frac{1}{2}} \quad (2.1.5)$$

$$\| \boldsymbol{w} \|_{2} = \left(\frac{1}{2} \sum_{k=0}^{N-1} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{w}_{k} \right)^{\frac{1}{2}}$$
(2.1.6)

式中干扰输入 $w \in \mathscr{L}_2[0, N-1], Q_i$ 是对称正定阵。但是按照 (2.1.3) 所定义的目标函数研究问题通常比较困难,因此考虑下 列形式的目标函数以方便研究^[3~5]。

 $\|\mathscr{G}_{zw}(\boldsymbol{u})\|_{[0,N-1]} < \gamma \qquad (2.1.7)$

这样问题就成为一个次优 H_{∞} 控制问题,即在 $\mathscr{L}_{2}[0, N-1]$ 空间 中寻找控制序列 $\{u_{k}\}$

$$\boldsymbol{u}_k = \mathscr{T} \boldsymbol{x}_k \tag{2.1.8}$$

使得

$$\frac{1}{2}\sum_{k=0}^{N-1} \boldsymbol{z}_{k}^{\mathrm{T}} \boldsymbol{z}_{k} + \frac{1}{2} \boldsymbol{x}_{N}^{\mathrm{T}} \boldsymbol{\varrho}_{\mathrm{f}} \boldsymbol{x}_{N} < \frac{1}{2} \boldsymbol{\gamma}^{2} \sum_{k=0}^{N-1} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{w}_{k} \qquad (2.1.9)$$

其中 🗇 是线性因果算子。这样就可以引入如下形式的目标函数

$$J_{\gamma}(\boldsymbol{u},\boldsymbol{w}) = \| \mathscr{G}_{zw}(\boldsymbol{u}) \|_{\frac{2}{2}}^{2} - \gamma^{2} \| \boldsymbol{w} \|_{\frac{2}{2}}^{2}$$
$$= \frac{1}{2} \sum_{k=0}^{N-1} \boldsymbol{z}_{k}^{\mathrm{T}} \boldsymbol{z}_{k} + \frac{1}{2} \boldsymbol{x}_{N}^{\mathrm{T}} \boldsymbol{\mathcal{Q}}_{\mathrm{f}} \boldsymbol{x}_{N} - \frac{1}{2} \gamma^{2} \sum_{k=0}^{N-1} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{w}_{k}$$
$$(2. 1. 10)$$

定理 2.1^[1] 对于给定的 γ,当且仅当

 $\gamma^2 \boldsymbol{I} - \boldsymbol{D}_k^{\mathrm{T}} (\boldsymbol{I} + \boldsymbol{M}_{k+1} \boldsymbol{B}_k \boldsymbol{B}_k^{\mathrm{T}})^{-1} \boldsymbol{M}_{k+1} \boldsymbol{D}_k > 0 \quad (2.1.11)$

成立时,存在满足条件的次优 H_{∞} 控制器,上式中的 M_{k+1} 满足

 $M_k = Q_k + A_k^{\mathrm{T}} M_{k+1} \Lambda_k^{-1} A_k, \quad M_N = Q_{\mathrm{f}}$ (2.1.12) 其中

 $\boldsymbol{\Lambda}_{k} = \boldsymbol{I} + (\boldsymbol{B}_{k}\boldsymbol{B}_{k}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{D}_{k}\boldsymbol{D}_{k}^{\mathrm{T}})\boldsymbol{M}_{k+1} \qquad (2.1.13)$

也可以将式(2.1.12)、(2.1.13) 写成 Riccati 差分方程的形式

 $\boldsymbol{M}_{k} = \boldsymbol{Q}_{k} + \boldsymbol{A}_{k}^{\mathrm{T}} \boldsymbol{M}_{k+1} [\boldsymbol{I} + (\boldsymbol{B}_{k} \boldsymbol{B}_{k}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}}) \boldsymbol{M}_{k+1}]^{-1} \boldsymbol{A}_{k}$ (2.1.14)

此时的反馈控制 u 及干扰 w 分别为

$$\boldsymbol{u}_{k} = - (\boldsymbol{I} + \boldsymbol{B}_{k}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{B}_{k})^{-1} \boldsymbol{B}_{k}^{\mathrm{T}} \boldsymbol{M}_{k+1} (\boldsymbol{D}_{k} \boldsymbol{w}_{k} + \boldsymbol{A}_{k} \boldsymbol{x}_{k}) \quad (2.1.15a)$$
$$\boldsymbol{w}_{k} = \gamma^{-2} \boldsymbol{D}_{k}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{\Lambda}_{k}^{-1} \boldsymbol{A}_{k} \boldsymbol{x}_{k} \quad (2.1.15b)$$

而且

 $J_{\gamma}(\boldsymbol{u},\boldsymbol{w}) = \boldsymbol{x}_{0}^{\mathrm{T}}\boldsymbol{M}_{0}\boldsymbol{x}_{0} \qquad (2.1.16)$

若定义 γ 的集合 $\Gamma := \{\gamma > 0: \mathfrak{I}(2, 1, 11)$ 成立 $\},$ 并令 $\hat{\gamma}$ 为 Γ 的下确界, 即 $\hat{\gamma} := \inf\{\gamma: \gamma \in \Gamma\}, 则有$

$$\gamma_{\rm opt} = \gamma \tag{2.1.17}$$

按照时变系统 H_{∞} 控制器的形式,可以给出下列线性定常系统

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{B}\boldsymbol{u}_k + \boldsymbol{D}\boldsymbol{w}_k \qquad (2.1.18)$$

 $\boldsymbol{z}_k = \boldsymbol{H}\boldsymbol{x}_k + \boldsymbol{N}\boldsymbol{u}_k \qquad (2.1.19)$

在有限区间 $k \in [0, N-1]$ 上的 H_{∞} 控制器。即对于给定的 $\gamma > 0$, 当且仅当

 $\gamma^2 I - D^{T} (I + M_{k+1} B B^{T})^{-1} M_{k+1} D > 0$ (2.1.20) 成 立时,存在满足条件的次优 H_{∞} 控制器, M_{k+1} 是满足下列方程 的矩阵序列

 $\boldsymbol{M}_{k} = \boldsymbol{Q} + \boldsymbol{A}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{\Lambda}_{k}^{-1} \boldsymbol{A}, \quad \boldsymbol{M}_{N} = \boldsymbol{Q}_{\mathrm{f}}$ (2.1.21)

$$\boldsymbol{\Lambda}_{k} = \boldsymbol{I} + (\boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{D}\boldsymbol{D}^{\mathrm{T}})\boldsymbol{M}_{k+1} \qquad (2.1.22)$$

即

$$\boldsymbol{M}_{k} = \boldsymbol{Q} + \boldsymbol{A}^{\mathrm{T}} \boldsymbol{M}_{k+1} [\boldsymbol{I} + (\boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{D}\boldsymbol{D}^{\mathrm{T}}) \boldsymbol{M}_{k+1}]^{-1} \boldsymbol{A}$$

(2.1.23)

此时反馈控制及干扰分别为

 $\boldsymbol{u}_{k} = - (\boldsymbol{I} + \boldsymbol{B}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{B})^{-1} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{M}_{k+1} (\boldsymbol{D} \boldsymbol{w}_{k} + \boldsymbol{A} \boldsymbol{x}_{k}) \qquad (2. 1. 24a)$ $\boldsymbol{w}_{k} = \gamma^{-2} \boldsymbol{D}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{\Lambda}_{k}^{-1} \boldsymbol{A} \boldsymbol{x}_{k} \qquad (2. 1. 24b)$

定常系统无限区间次优 H_∞ 控制器存在的条件则为

 $\gamma^{2} I - D^{T} (I + MBB^{T})^{-1} MD > 0$ (2.1.25) 其中的 *M* 为 Riccati 代数方程的解

 $M = Q + A^{T}M[I + (BB^{T} - \gamma^{-2}DD^{T})M]^{-1}A$ (2.1.26) 由上述结论可知 H_{∞} 全信息控制器存在与否是由 Riccati 方程 解的存在性及约束条件(2.1.11) 决定的,事实上条件(2.1.11) 等 价于要求(2.1.13) 中定义的矩阵 Λ_{k} 所有特征值为正^[1]。显然对于 $Q_{i} > 0$ 的边界条件,若 γ 的取值使得 Λ_{k} 奇异,则 Riccati 方程 (2.1.14) 的解亦不存在,所以这时通过 Riccati 方程解的存在性条 件就可以判断满足条件的 H_{∞} 全信息控制器存在与否。

文献 1,4,5 中还介绍了仅利用系统状态反馈的 H_{∞} 控制器的存在条件与具体形式,这里也简单介绍一下。仍然考虑系统 (2.1.1 ~ 2.1.2)满足性能指标式(2.1.7)的 H_{∞} 控制问题,如果 控制器只能利用系统的状态信息进行反馈,则有如下定理:

定理 2. 2^[1,4] 对于给定的 γ,当且仅当

 $\gamma^2 \boldsymbol{I} - \boldsymbol{D}_k^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{D}_k > 0 \qquad (2.1.27)$

成立时,存在满足条件的次优 H_{∞} 控制器,其中 M_{k+1} 由下列方程 定义

 $\boldsymbol{M}_{k} = \boldsymbol{Q}_{k} + \boldsymbol{A}_{k}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{\Lambda}_{k}^{-1} \boldsymbol{A}_{k}, \quad \boldsymbol{M}_{N} = \boldsymbol{Q}_{\mathrm{f}} \qquad (2.1.28)$

而

 $\Lambda_k = I + (B_k B_k^{\mathrm{T}} - \gamma^{-2} D_k D_k^{\mathrm{T}}) M_{k+1}$ (2.1.29) 或者写成 Riccati 差分方程的形式

 $\boldsymbol{M}_{k} = \boldsymbol{Q}_{k} + \boldsymbol{A}_{k}^{\mathrm{T}} \boldsymbol{M}_{k+1} [\boldsymbol{I} + (\boldsymbol{B}_{k} \boldsymbol{B}_{k}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}}) \boldsymbol{M}_{k+1}]^{-1} \boldsymbol{A}_{k}$ (2.1.30)

此时状态反馈控制 u 及干扰 w 分别为

$$\boldsymbol{u}_{k} = -\boldsymbol{B}_{k}^{\mathrm{T}}\boldsymbol{M}_{k+1}\boldsymbol{\Lambda}_{k}^{-1}\boldsymbol{A}_{k}\boldsymbol{x}_{k} \qquad (2.1.31\mathrm{a})$$

$$\boldsymbol{w}_{k} = \boldsymbol{\gamma}^{-2} \boldsymbol{D}_{k}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{\Lambda}_{k}^{-1} \boldsymbol{A}_{k} \boldsymbol{x}_{k} \qquad (2.1.31\mathrm{b})$$

而且

$$J_{\gamma}(\boldsymbol{u},\boldsymbol{w}) = \boldsymbol{x}_{0}^{\mathrm{T}}\boldsymbol{M}_{0}\boldsymbol{x}_{0} \qquad (2.\ 1.\ 32)$$

条件(2.1.27)意味着(2.1.29)中 Λ_k 的可逆性,反之则不然。

定义集合 $\Gamma_1 := \{\gamma > 0: \vec{z} (2, 1, 27) , \vec{z} \},$ 并令 γ 为 Γ_1 的下确界, 即 $\tilde{\gamma} := \inf\{\gamma := \gamma \in \Gamma_1\}, 则有$

$$\gamma_{\rm opt} = \gamma \tag{2.1.33}$$

并且 $\gamma < \widetilde{\gamma}$,即全信息 H_{∞} 控制系统的性能指标要优于状态反馈 H_{∞} 控制系统。

基于时变系统 H.。控制器的形式,可以给出线性定常系统

 $\boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{B}\boldsymbol{u}_k + \boldsymbol{D}\boldsymbol{w}_k \qquad (2.1.34)$

 $\boldsymbol{z}_k = \boldsymbol{H}\boldsymbol{x}_x + \boldsymbol{N}\boldsymbol{u}_k \qquad (2.\,1.\,35)$

在有限区间 $k \in [0, N-1]$ 上的 H_{∞} 控制器。即对于给定的 $\gamma > 0$, 当且仅当

 $\gamma^2 \boldsymbol{I} - \boldsymbol{D}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{D} > 0 \qquad (2.1.36)$

成 立时,存在满足条件的次优 H_{∞} 控制器, M_{k+1} 是满足下列方程 的矩阵序列

$$M_{k} = \boldsymbol{Q} + \boldsymbol{A}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{\Lambda}_{k}^{-1} \boldsymbol{A}, \quad \boldsymbol{M}_{N} = \boldsymbol{Q}_{\mathrm{f}} \qquad (2. \ 1. \ 37)$$
$$\boldsymbol{\Lambda}_{k} = \boldsymbol{I} + (\boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{D} \boldsymbol{D}^{\mathrm{T}}) \boldsymbol{M}_{k+1} \qquad (2. \ 1. \ 38)$$

即

 $\boldsymbol{M}_{k} = \boldsymbol{Q} + \boldsymbol{A}^{\mathrm{T}} \boldsymbol{M}_{k+1} [\boldsymbol{I} + (\boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{D}\boldsymbol{D}^{\mathrm{T}}) \boldsymbol{M}_{k+1}]^{-1} \boldsymbol{A}$ (2.1.39)

此时状态反馈控制及干扰分别为

$$\boldsymbol{u}_{k} = -\boldsymbol{B}^{\mathrm{T}}\boldsymbol{M}_{k+1}\boldsymbol{\Lambda}_{k}^{-1}\boldsymbol{A}\boldsymbol{x}_{k} \qquad (2.1.40a)$$

$$\boldsymbol{w}_{k} = \boldsymbol{\gamma}^{-2} \boldsymbol{D}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{\Lambda}_{k}^{-1} \boldsymbol{A} \boldsymbol{x}_{k} \qquad (2.1.40\mathrm{b})$$

无限区间次优 H.。控制器存在的条件则为

$$\gamma^2 \boldsymbol{I} - \boldsymbol{D}^{\mathrm{T}} \boldsymbol{M} \boldsymbol{D} > 0 \qquad (2.1.41)$$

其中 M 为 Riccati 代数方程的解

 $M = Q + A^{T}M[I + (BB^{T} - \gamma^{-2}DD^{T})M]^{-1}A$ (2.1.42) 现在仍然考虑本节开头讨论的离散 H_{∞} 全信息控制问题。引 入 Lagrange 乘子 λ_{k+1} ,可以将系统方程约束条件(2.1.1) 代入目 标函数得到其增广形式

$$J_{\gamma}(\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{\lambda}) = \frac{1}{2} \sum_{k=0}^{N-1} \left[\boldsymbol{x}_{k}^{T} \boldsymbol{Q}_{k} \boldsymbol{x}_{k} + \boldsymbol{u}_{k}^{T} \boldsymbol{u}_{k} - \boldsymbol{\gamma}^{2} \boldsymbol{w}_{k}^{T} \boldsymbol{w}_{k} + \boldsymbol{\lambda}_{k+1}^{T} (\boldsymbol{A}_{k} \boldsymbol{x}_{k} + \boldsymbol{D}_{k} \boldsymbol{w}_{k} + \boldsymbol{B}_{k} \boldsymbol{u}_{k} - \boldsymbol{x}_{k+1}) \right] + \frac{1}{2} \boldsymbol{x}_{N}^{T} \boldsymbol{Q}_{f} \boldsymbol{x}_{N}$$

$$(2.1.43)$$

由最优的必要条件,即 $\delta J_{\gamma}(\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{\lambda}) = 0$,可得

$$\boldsymbol{u}_{k} = -\boldsymbol{B}_{k}^{\mathrm{T}}\boldsymbol{\lambda}_{k+1} \qquad (2.1.44\mathrm{a})$$

$$\boldsymbol{w}_{k} = \boldsymbol{\gamma}^{-2} \boldsymbol{D}_{k}^{\mathrm{T}} \boldsymbol{\lambda}_{k+1}$$
 (2.1.44b)

以及对偶形式的 Hamilton 差分方程边值问题

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}_k \boldsymbol{x}_k + (\boldsymbol{\gamma}^{-2} \boldsymbol{D}_k \boldsymbol{D}_k^{\mathrm{T}} - \boldsymbol{B}_k \boldsymbol{B}_k^{\mathrm{T}}) \boldsymbol{\lambda}_{k+1} \quad (2.1.45a)$$

$$\boldsymbol{\lambda}_{k} = \boldsymbol{C}_{k}^{\mathrm{T}} \boldsymbol{C}_{k} \boldsymbol{x}_{k} + \boldsymbol{A}_{k}^{\mathrm{T}} \boldsymbol{\lambda}_{k+1} \qquad (2.1.45\mathrm{b})$$

边界条件为

$$x_0 = 0$$
 (2.1.46a)

 $\boldsymbol{\lambda}_{\scriptscriptstyle N} = \boldsymbol{Q}_{\scriptscriptstyle \mathrm{f}} \boldsymbol{x}_{\scriptscriptstyle N} \tag{2.1.46b}$

将式(2.1.44)代入式(2.1.43)可得

$$J_{\gamma}(\boldsymbol{x},\boldsymbol{\lambda}) = \sum_{k=0}^{N-1} \left(-\boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{x}_{k+1} - \frac{1}{2} \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{B}_{k} \boldsymbol{B}_{k}^{\mathrm{T}} \boldsymbol{\lambda}_{k+1} + \frac{1}{2} \boldsymbol{\gamma}^{-2} \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}} \boldsymbol{\lambda}_{k+1} + \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{A}_{k} \boldsymbol{x}_{k} + \frac{1}{2} \boldsymbol{x}_{k}^{\mathrm{T}} \boldsymbol{Q}_{k} \boldsymbol{x}_{k} \right) + \frac{1}{2} \boldsymbol{x}_{N}^{\mathrm{T}} \boldsymbol{Q}_{l} \boldsymbol{x}_{N}$$

$$(2.1.47)$$

显然上式存在驻值与差分方程边值问题(2.1.45)、(2.1.46)存在 非平凡解是等价的,还可以将差分方程的特征值表达为一个两类 变量广义 Rayleigh 商驻值的形式,即

$$\gamma^{-2} = \operatorname{st} \frac{\overline{\Pi}_1}{\overline{\Pi}_2} \tag{2.1.48}$$

其中 Π_1 和 Π_2 分别为

$$egin{aligned} &II_1 = \sum\limits_{k=0}^{N-1} \Big(oldsymbol{\lambda}_{k+1}^{ op} oldsymbol{x}_{k+1} - oldsymbol{\lambda}_{k+1}^{ op} oldsymbol{A}_k oldsymbol{x}_k &- rac{1}{2} oldsymbol{x}_k^{ op} oldsymbol{Q}_k oldsymbol{x}_k &+ \ &rac{1}{2} oldsymbol{\lambda}_{k+1}^{ op} oldsymbol{B}_k oldsymbol{B}_k^{ op} oldsymbol{\lambda}_{k+1} \Big) - rac{1}{2} oldsymbol{x}_N^{ op} oldsymbol{Q}_i oldsymbol{n}_N \end{aligned}$$

(2.1.49a)

$$\boldsymbol{\Pi}_{2} = \frac{1}{2} \sum_{k=0}^{N-1} \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}} \boldsymbol{\lambda}_{k+1}$$
(2.1.49b)

广义 Rayleigh 商的驻值(特征值) 满足 $\gamma_1^{-2} \ll \gamma_2^{-2} \ll \dots, \mathfrak{m} \gamma_1 \ge \gamma_2$ $\ge \dots, \mathsf{后面还将证明式}(2, 1, 48)$ 等价于通常的一类变量 Rayleigh 商驻值问题,即广义矩阵特征值问题。

2.2 Hamilton 差分系统特征值

线 性 Hamilton 差分系统的近期研究成果见文献 $[6 \sim 8]$,本节介绍 Hamilton 差分系统特征值问题的基本概念和定理。

考虑下列差分方程边值问题

 $\Delta \mathbf{x}_{k} = \widetilde{\mathbf{A}}_{k}(\rho)\mathbf{x}_{k} + \widetilde{\mathbf{B}}_{k}(\rho)\mathbf{\lambda}_{k+1}$ (2.2.1a)
$$\Delta \boldsymbol{\lambda}_{k} = \widetilde{\boldsymbol{C}}_{k}(\rho)\boldsymbol{x}_{k} - \widetilde{\boldsymbol{A}}_{k}^{\mathrm{T}}(\rho)\boldsymbol{\lambda}_{k+1}$$
 (2.2.1b)

共轭边界条件为

$$\boldsymbol{R}^* \begin{bmatrix} -\boldsymbol{x}_0 \\ \boldsymbol{x}_N \end{bmatrix} + \boldsymbol{R} \begin{bmatrix} \boldsymbol{\lambda}_0 \\ \boldsymbol{\lambda}_N \end{bmatrix} = \boldsymbol{0} \qquad (2.2.2)$$

其中 $k \in [0, N - 1]$,前向差分算子 Δ 定义为 $\Delta x_{k} = x_{k+1} - x_{k}$, ρ 为实数, *R* 和 R^{*} 为 $2n \times 2n$ 矩阵并分别满足

 $\operatorname{rank}(\boldsymbol{R} \ \boldsymbol{R}^*) = 2n$ (2. 2. 3a)

$$\boldsymbol{R}\boldsymbol{R}^{* \mathrm{T}} = \boldsymbol{R}^{*} \boldsymbol{R}^{\mathrm{T}} \qquad (2.2.3\mathrm{b})$$

另外,对于所有的 $k \in [0, N-1], n \times n$ 矩阵 $\widetilde{A}_k(\rho), \widetilde{B}_k(\rho), \widetilde{C}_k(\rho)$ 是 ρ 的连续可微函数。而矩阵

$$\boldsymbol{H}_{k}(\rho) = \begin{bmatrix} -\widetilde{\boldsymbol{C}}_{k}(\rho) & \widetilde{\boldsymbol{A}}_{k}^{\mathrm{T}}(\rho) \\ \widetilde{\boldsymbol{A}}_{k}(\rho) & \widetilde{\boldsymbol{B}}_{k}(\rho) \end{bmatrix}$$
(2.2.4)

为对称 Hamilton 矩阵。如果实数 ρ 使得 Hamilton 差分方程边值问 题 (2. 2. 1)、(2. 2. 2)存在满足边界条件的非平凡解(x, λ),则 ρ 为 Hamilton 差分系统(2. 2. 1)、(2. 2. 2)的特征值,而相应的解(x, λ) 称为特征函数。

如果边界条件(2.2.2)可以写成下面的形式,则称其为可分 离边界条件

$$\boldsymbol{R} = \begin{bmatrix} \boldsymbol{R}_0 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R}_{N+1} \end{bmatrix}$$
(2. 2. 5a)

$$\boldsymbol{R}^* = \begin{bmatrix} -\boldsymbol{R}_0^* & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R}_{N+1}^* \end{bmatrix}$$
(2. 2. 5b)

其中的 $n \times n$ 矩阵 $R_0, R_0^*, R_{N+1}, R_{N+1}^*$ 分别满足

rank $(\mathbf{R}_{0} \mathbf{R}_{0}^{*}) = \operatorname{rank}(\mathbf{R}_{N+1} \mathbf{R}_{N+1}^{*}) = n$ (2.2.6)

$$\boldsymbol{R}_{0}\boldsymbol{R}_{0}^{* \mathrm{T}} = \boldsymbol{R}_{0}^{*} \boldsymbol{R}_{0}^{\mathrm{T}}$$
(2.2.7a)

$$\boldsymbol{R}_{N+1}\boldsymbol{R}_{N+1}^{* \mathrm{T}} = \boldsymbol{R}_{N+1}^{*}\boldsymbol{R}_{N+1}^{\mathrm{T}}$$
(2.2.7b)

若对于 $k \in [0,N]$, $n \times n$ 矩阵 X_k , Λ_k (代替向量 x_k , λ_k) 是式

(2.2.1) 的解,并且有

rank $(\boldsymbol{X}_{k}^{\mathrm{T}} \boldsymbol{\Lambda}_{k}^{\mathrm{T}}) = n, \boldsymbol{X}_{k}^{\mathrm{T}} \boldsymbol{\Lambda}_{k} = \boldsymbol{\Lambda}_{k}^{\mathrm{T}}, \boldsymbol{X}_{k}$ (2.2.8)

则称(X,Λ)为式(2.2.1)的一个联合基(conjoined basis)。如果存 在两个联合基(X,Λ)和($\tilde{X},\tilde{\Lambda}$)满足

$$\boldsymbol{X}_{k}^{\mathrm{T}}\widetilde{\boldsymbol{\lambda}}_{k}-\boldsymbol{\Lambda}_{k}^{\mathrm{T}}\widetilde{\boldsymbol{X}}_{k}=\boldsymbol{I}$$
(2. 2. 9)

则称它们是式 (2.2.1) 的正则联合基 (normalized conjoined bases)。其中 $I \ge n \times n$ 单位矩阵。

定理 2.3^[6]: 设(*X*,*A*) 和(\tilde{X},\tilde{A}) 为式(2.2.1) 的正则联合基。 则 ρ 为式(2.2.1)、(2.2.2) 的特征值当且仅当下列 $2n \times 2n$ 阶矩阵

 $\boldsymbol{U} = \boldsymbol{R}^* \begin{bmatrix} -\boldsymbol{X}_0 & -\boldsymbol{\widetilde{X}}_0 \\ \boldsymbol{X}_N & \boldsymbol{\widetilde{X}}_N \end{bmatrix} + \boldsymbol{R} \begin{bmatrix} \boldsymbol{\Lambda}_0 & \boldsymbol{\widetilde{\Lambda}}_0 \\ \boldsymbol{\Lambda}_N & \boldsymbol{\widetilde{\Lambda}}_N \end{bmatrix} \quad (2.2.10)$

为奇异矩阵。

定理 2.4^[6]:如果边界条件为可分离形式,令(*X*,*A*)为式 (2.2.1)的联合基,且

$$\boldsymbol{X}_{N} = - \boldsymbol{R}_{N}^{\mathrm{T}} \qquad (2.2.11a)$$

$$\boldsymbol{\Lambda}_{N} = \boldsymbol{R}_{N}^{* \mathrm{T}} \qquad (2.2.11 \mathrm{b})$$

则 ρ 是系统(2.2.1)、(2.2.2)的一个特征值当且仅当 $n \times n$ 矩阵 $R_0^* X_0 + R_0 \Lambda_0$ (2.2.12)

为奇异阵。

证明 这里给出的证明与文献 6 中系定理 1 的证明类似。对于上述联合基,必然存在式(2.2.1)的另一个二联合基($\tilde{X}, \tilde{\Lambda}$)与 (X, Λ)构成正则基^[6]。根据定理 2.3, ρ 是式(2.2.1)、(2.2.2)的特征值当且仅当

$$egin{aligned} U &= R^*egin{bmatrix} -X_0 & -\widetilde{X}_0 \ X_N & \widetilde{X}_N \end{bmatrix} + Regin{bmatrix} \Lambda_0 & \widetilde{\Lambda}_0 \ \Lambda_N & \widetilde{\Lambda}_N \end{bmatrix} = \ & egin{bmatrix} R^* & \mathbf{0} \ \mathbf{0} & R^*_N \end{bmatrix}egin{bmatrix} -X_0 & -\widetilde{X}_0 \ -R^T_N & \widetilde{X}_N \end{bmatrix} + egin{bmatrix} R_0 & \mathbf{0} \ \mathbf{0} & R_N \end{bmatrix}egin{bmatrix} \Lambda_0 & \widetilde{\Lambda}_0 \ R^{*\,\mathrm{T}}_N & \widetilde{\Lambda}_N \end{bmatrix} = \end{aligned}$$

 $\begin{bmatrix} \boldsymbol{R}_{0}^{*}\boldsymbol{X}_{0} + \boldsymbol{R}_{0}\boldsymbol{\Lambda}_{0} & \boldsymbol{R}_{0}^{*}\widetilde{\boldsymbol{X}}_{0} + \boldsymbol{R}_{0}\widetilde{\boldsymbol{\Lambda}}_{0} \\ - \boldsymbol{R}_{N}^{*}\boldsymbol{R}_{N}^{\mathrm{T}} + \boldsymbol{R}_{N}\boldsymbol{R}_{N}^{*\mathrm{T}} & \boldsymbol{R}_{N}^{*}\widetilde{\boldsymbol{X}}_{N} + \boldsymbol{R}_{N}\widetilde{\boldsymbol{\Lambda}}_{N} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_{0}^{*}\boldsymbol{X}_{0} + \boldsymbol{R}_{0}\boldsymbol{\Lambda}_{0} & \boldsymbol{R}_{0}^{*}\widetilde{\boldsymbol{X}}_{0} + \boldsymbol{R}_{0}\widetilde{\boldsymbol{\Lambda}}_{0} \\ \boldsymbol{0} & -\boldsymbol{I} \end{bmatrix}$

为奇异矩阵。显然这等价于 R₀ X₀ + R₀A₀ 是奇异矩阵。

现在考察 Riccati 方程与 Hamilton 方程的关系,令 $\widetilde{A}_{k}(\rho) = I$ + A_{k} , $\widetilde{B}_{k}(\rho) = \gamma^{-2}D_{k}D_{k}^{T} - B_{k}B_{k}^{T}$, $\widetilde{C}_{k}(\rho) = -H_{k}^{T}H_{k}$,则方程(2.2.1) 可以变换为与式(2.1.45) 一致的形式,从而 Riccati 方程(2.1.14) 的解序列可以由联合基(X, Λ)构造^[8]。令 $P_{k} = \Lambda_{k}X_{k}^{-1}$,式(2.1.45) 可写成如下矩阵形式

 $P_{k} = H_{k}^{T}H_{k} + A_{k}^{T}P_{k+1}(X_{k}X_{k+1}^{-1})^{-1}$ (2.2.13a) $I = A_{k}X_{k}X_{k+1}^{-1} + (\gamma^{-2}D_{k}D_{k}^{T} - B_{k}B_{k}^{T})P_{k+1}$ (2.2.13b) 若 I + (B_{k}B_{k}^{T} - \gamma^{-2}D_{k}D_{k}^{T})P_{k+1}可逆,由上式可得

 $\boldsymbol{P}_{k} = \boldsymbol{H}_{k}^{\mathrm{T}}\boldsymbol{H}_{k} + \boldsymbol{A}_{k}^{\mathrm{T}}\boldsymbol{P}_{k+1}[\boldsymbol{I} + (\boldsymbol{B}_{k}\boldsymbol{B}_{k}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{D}_{k}\boldsymbol{D}_{k}^{\mathrm{T}})\boldsymbol{P}_{k+1}]^{-1}\boldsymbol{A}_{k}$

(2.2.14)

显然式(2.2.14) 与 Riccati 方程(2.1.14) 一致。考虑到(2.1.30) 式,令

$$\boldsymbol{R}^* = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{Q}_{\mathrm{f}} \end{bmatrix}, \quad \boldsymbol{R} = \begin{bmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & -\boldsymbol{I} \end{bmatrix}$$
(2.2.15)

则对于联合基 (X, Λ) 有 $_{:}X_{N} = I, \Lambda_{N} = Q_{f}, P_{N} = \Lambda_{N}X_{N}^{-1} = Q_{f}$ 并且 $R_{0} = 0, R_{0}^{*} = I_{o}$ 按照定理 2.3,矩阵

 $R_0^* X_0 + R_0 \Lambda_0 = X_0$ (2.2.16) 是奇异的当且仅当 γ^{-2} 是 Hamilton 差分系统(2.1.45)(2.1.46) 的特征值。显然,在这种情况下 Riccati 方程解矩阵中的元素在 k = 0 时将趋于无穷大。

2.3 广义 Rayleigh 商

考虑下列广义特征值问题

 $(K - \rho M)d = 0$ (2.3.1)

其中对称矩阵 $K \ge 0, M > 0$ 及向量 $d \in \mathbb{R}^{Nn+n}$,且分别具有下列形 式

$$\boldsymbol{K} = \begin{bmatrix} \boldsymbol{K}_{aa0} & \boldsymbol{K}_{ab0} & & \\ & \boldsymbol{K}_{bb0} + \boldsymbol{K}_{aa1} & & \\ & & \ddots & \boldsymbol{K}_{abN} \\ symmetry & \boldsymbol{K}_{bbN} + \boldsymbol{S}_{l}^{-1} \end{bmatrix} \quad (2. \ 3. \ 2a)$$
$$\boldsymbol{M} = \begin{bmatrix} \boldsymbol{M}_{0} & & \\ & \boldsymbol{M}_{1} & & \\ & & \ddots & \\ & & \boldsymbol{M}_{N} \end{bmatrix} \quad (2. \ 3. \ 2b)$$
$$\boldsymbol{d} = \begin{bmatrix} \boldsymbol{d}_{0}^{\mathrm{T}}, \boldsymbol{d}_{1}^{\mathrm{T}}, \cdots, \boldsymbol{d}_{N}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \quad (2. \ 3. \ 2c)$$

其中 K_{aai} , K_{bbi} 为对称阵, $K_{abi}^{T} = K_{bai}$, K_{aai} , K_{bbi} , $K_{abi} \in \mathbb{R}^{n \times n}$, $d_i \in \mathbb{R}^n$ ($i = 0, 1, \dots, N$)。广义特征值问题(2.3.1)的特征值是下列 Rayleigh商的驻值

$$\rho = \operatorname{st} \frac{\boldsymbol{d}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{d}}{\boldsymbol{d}^{\mathrm{T}} \boldsymbol{M} \boldsymbol{d}}$$
(2.3.3)

为与方程(2.1.1)的初始条件一致,设 $d_0 = 0$,则有

$$\rho = \operatorname{st} \frac{\sum_{k=0}^{N-1} U_k^0(\boldsymbol{d}_k, \boldsymbol{d}_{k+1}) + \frac{1}{2} \boldsymbol{d}_N^{\mathrm{T}} \boldsymbol{S}_{\mathrm{f}}^{-1} \boldsymbol{d}_N}{\sum_{k=0}^{N-1} \frac{1}{2} \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{d}_{k+1}}$$
(2.3.4)

其中

$$U_k^0(\boldsymbol{d}_k, \boldsymbol{d}_{k+1}) = \frac{1}{2} \boldsymbol{d}_k^{\mathrm{T}} \boldsymbol{K}_{aak} \boldsymbol{d}_k + \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{K}_{bak} \boldsymbol{d}_k + \frac{1}{2} \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{K}_{bbk} \boldsymbol{d}_{k+1}$$
(2.3.5)

特征值问题(2.3.1)等价于变分问题

$$\delta \left[\frac{1}{2} \boldsymbol{d}^{\mathrm{T}} (\boldsymbol{K} - \rho \boldsymbol{M}) \boldsymbol{d} \right] = 0 \qquad (2.3.6)$$

即

今

$$\delta \left[\sum_{k=0}^{N-1} U_{k}^{0}(\boldsymbol{d}_{k}, \boldsymbol{d}_{k+1}) + \frac{1}{2} \boldsymbol{d}_{N}^{\mathrm{T}} \boldsymbol{S}_{\mathrm{f}}^{-1} \boldsymbol{d}_{N} - \sum_{k=0}^{N-1} \frac{1}{2} \rho \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{d}_{k+1} \right] = 0$$
(2. 3. 7)

$$U_{k}(\boldsymbol{d}_{k},\boldsymbol{d}_{k+1}) = U_{k}^{0}(\boldsymbol{d}_{k},\boldsymbol{d}_{k+1}) - \frac{1}{2}\rho\boldsymbol{d}_{k+1}^{\mathrm{T}}\boldsymbol{M}_{k+1}\boldsymbol{d}_{k+1}$$
(2.3.8)

通过下列离散 Legendre 变换,变分问题(2.3.7) 可以变换为等价 的正则形式。即定义

$$\boldsymbol{n}_{k} = \frac{\partial U_{k}}{\partial \boldsymbol{d}_{k}} = \boldsymbol{K}_{aak} \boldsymbol{d}_{k} + \boldsymbol{K}_{abk} \boldsymbol{d}_{k+1} \qquad (2.3.9a)$$

$$\boldsymbol{n}_{k+1} = -\frac{\partial U_k}{\partial \boldsymbol{d}_{k+1}} = -\boldsymbol{K}_{bbk}\boldsymbol{d}_{k+1} + \rho \boldsymbol{M}_{k+1}\boldsymbol{d}_{k+1} - \boldsymbol{K}_{bak}\boldsymbol{d}_k$$

(2.3.9b)

则U_k可以表示为

$$U_k(\boldsymbol{d}_k, \boldsymbol{d}_{k+1}) = \frac{1}{2} \boldsymbol{n}_k^{\mathrm{T}} \boldsymbol{d}_k - \frac{1}{2} \boldsymbol{n}_{k+1}^{\mathrm{T}} \boldsymbol{d}_{k+1} \qquad (2.3.10)$$

솏

$$H_{k}(\boldsymbol{n}_{k},\boldsymbol{d}_{k+1}) = -\boldsymbol{d}_{k+1}^{\mathrm{T}}\boldsymbol{n}_{k+1} - U_{k}(\boldsymbol{d}_{k},\boldsymbol{d}_{k+1}) \quad (2.3.11)$$

由(2.3.9)求解 n_{k+1} 和 d_k ,可得下列对偶方程

$$\boldsymbol{n}_{k+1} = \boldsymbol{F}_k \boldsymbol{n}_k - \boldsymbol{G}_k \boldsymbol{d}_{k+1} \qquad (2.3.12a)$$

$$\boldsymbol{d}_{k} = \boldsymbol{E}_{k}\boldsymbol{n}_{k} + \boldsymbol{F}_{k}^{\mathrm{T}}\boldsymbol{d}_{k+1} \qquad (2.3.12\mathrm{b})$$

其中

$$\boldsymbol{F}_{k} = -\boldsymbol{K}_{bak}\boldsymbol{K}_{aak}^{-1} \qquad (2.\ 3.\ 13a)$$

$$\boldsymbol{E}_{k} = \boldsymbol{K}_{aak}^{-1} \tag{2.3.13b}$$

$$\boldsymbol{G}_{k} = \boldsymbol{K}_{bbk} - \boldsymbol{K}_{bak} \boldsymbol{K}_{aak}^{-1} \boldsymbol{K}_{abk} - \rho \boldsymbol{M}_{k+1} = \boldsymbol{G}_{k}^{0} - \rho \boldsymbol{M}_{k+1}$$
(2.3.13c)

上述矩阵称为区段矩阵。则 Hamilton 函数 $H_k(\mathbf{n}_k, \mathbf{d}_{k+1})$ 可变换成

下列形式

$$H_k(\boldsymbol{n}_k, \boldsymbol{d}_{k+1}) = -\frac{1}{2}\boldsymbol{n}_k^{\mathrm{T}}\boldsymbol{E}_k\boldsymbol{n}_k - \boldsymbol{d}_{k+1}^{\mathrm{T}}\boldsymbol{F}_k\boldsymbol{n}_k + \frac{1}{2}\boldsymbol{d}_{k+1}^{\mathrm{T}}\boldsymbol{G}_k\boldsymbol{d}_{k+1}$$
(2.3.14)

令 $d_N = S_i n_N$,此时可得变分问题(2.3.7)的正则形式

$$\delta \left[\sum_{k=0}^{N-1} \left(-\boldsymbol{n}_{k+1}^{\mathrm{T}} \boldsymbol{d}_{k+1} - H_{k}(\boldsymbol{n}_{k}, \boldsymbol{d}_{k+1}) \right) + \frac{1}{2} \boldsymbol{n}_{N}^{\mathrm{T}} \boldsymbol{S}_{\mathrm{f}} \boldsymbol{n}_{N} \right] = \\ \delta \left[\sum_{k=0}^{N-1} \left(-\boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{n}_{k+1} + \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{F}_{k} \boldsymbol{n}_{k} + \frac{1}{2} \boldsymbol{n}_{k}^{\mathrm{T}} \boldsymbol{E}_{k} \boldsymbol{n}_{k} - \frac{1}{2} \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{G}_{k} \boldsymbol{d}_{k+1} \right) + \frac{1}{2} \boldsymbol{n}_{N}^{\mathrm{T}} \boldsymbol{S}_{\mathrm{f}} \boldsymbol{n}_{N} \right]$$

$$(2.3.15)$$

根据上述结果,Rayleigh 商定(2.3.4)可以变换为等价的两类变 量广义 Rayleigh 商形式

$$\rho = \operatorname{st} \frac{\Phi_1}{\Phi_2} \tag{2.3.16}$$

其中

$$\boldsymbol{\Phi}_{1} = \sum_{k=0}^{N-1} \left(\boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{n}_{k+1} - \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{F}_{k} \boldsymbol{n}_{k} - \frac{1}{2} \boldsymbol{n}_{k}^{\mathrm{T}} \boldsymbol{E}_{k} \boldsymbol{n}_{k} + \frac{1}{2} \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{G}_{k}^{\mathrm{o}} \boldsymbol{d}_{k+1} \right) - \frac{1}{2} \boldsymbol{n}_{N}^{\mathrm{T}} \boldsymbol{S}_{\mathrm{f}} \boldsymbol{n}_{N}$$

$$(2.3.17a)$$

$$\boldsymbol{\Phi}_{2} = \sum_{k=0}^{N-1} \frac{1}{2} \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{M}_{k+1} \boldsymbol{d}_{k+1}$$
(2. 3. 17b)

比较式(2.3.16)及(2.1.33)可知其形式与意义完全一致。因为 $d \in \mathbb{R}^{N_{n+n}}$,特征值问题(2.3.1)的维数非常大,但这里仅需要计算 一阶特征值,所以应当选择适合这类问题的算法。这里采用扩展 Wittrick-Williams 算法结合 2^{N} 类型的区段合并算法求解这一问 题。

2.4 最优 H_{∞} 范数计算

2.4.1 Wittrick-Williams 特征值计数公式

对于广义特征值问题

 $(K - \rho M)x = 0$ (2.4.1) 其中 K ≥ 0, K^T = K, M > 0, M^T = M, x ∈ Rⁿ, 用 s{A} 表示对称矩 阵 A 的负特征值个数,定义广义特征值问题(2.4.1)小于给定值 ρ_{\pm} 的特征值个数为其特征值计数,并用 $J(\rho_{\pm})$ 表示,则有 $J(\rho_{\pm}) = s\{K - \rho_{\pm}M\}$ (2.4.2)

如果将式(2.4.1)中的矩阵及向量分块表示为下列形式

$$\left\{ \begin{bmatrix} \boldsymbol{K}_{aa} & \boldsymbol{K}_{ab} \\ \boldsymbol{K}_{ba} & \boldsymbol{K}_{bb} \end{bmatrix} - \rho \begin{bmatrix} \boldsymbol{M}_{aa} & \boldsymbol{M}_{ab} \\ \boldsymbol{M}_{ba} & \boldsymbol{M}_{bb} \end{bmatrix} \right\} \begin{bmatrix} \boldsymbol{x}_{a} \\ \boldsymbol{x}_{b} \end{bmatrix}$$
(2.4.3)

其中 $x_a \in \mathbf{R}^r, x_b \in \mathbf{R}^{n-r}$ 。设 $x_a = 0$,则有

$$(\boldsymbol{K}_{bb} - \rho \boldsymbol{M}_{bb})\boldsymbol{x}_{b} = \boldsymbol{0}$$
 (2.4.4)

记式(2.4.4) 小于 ρ_{\pm} 的特征值计数为 $J_0(\rho_{\pm})$,并记

$$D(\rho_{\#}) = \mathbf{K}_{aa} - \rho_{\#} \mathbf{M}_{aa} - (\mathbf{K}_{ab} - \rho_{\#} \mathbf{M}_{ab}) (\mathbf{K}_{bb} - \rho_{\#} \mathbf{M}_{bb})^{-1}$$
$$(\mathbf{K}_{ba} - \rho_{\#} \mathbf{M}_{ba})$$
(2.4.5)

则有

 $J(\rho_{\pm}) = J_0(\rho_{\pm}) + s\{\boldsymbol{D}(\rho_{\pm})\}$ (2.4.6)

当 $n \rightarrow \infty$, $D(\rho) \in \rho$ 的超越函数时上述等式依然成立^[9~10]。这里 给 出的是最简单的情况,这一公式最初是用结构力学的术语描述 并 证明的^[9~10], 文献 11 给出了其数学证明。为适应本章所研究的 广 义 Rayleigh 商 特 征 值 问 题 的 需 要,下 面 将 给 出 扩 展 Wittrick-Williams 特征值计数公式及其证明,其最初的表述与证 明见文献 12。

2.4.2 扩展 Wittrick-Williams 特征值计数公式

为简化表达形式,特征值问题 $(A - \rho B)x = 0$ 用Ax = 0表示。

本节中的所有特征值问题都用这种缩写形式。按照式(2.3.13),令 $F_i = -K_{bai}K_{aai}^{-1}$ (2.4.7a) $E_i = K_{aai}^{-1}$ (2.4.7b)

$$\boldsymbol{G}_{i} = \boldsymbol{K}_{bbi} - \boldsymbol{K}_{bai} \boldsymbol{K}_{aai}^{-1} \boldsymbol{K}_{abi} \qquad (2.4.7c)$$

注意 K_{bbi} 在这里是 $K_{bbi} - \rho M$ 的缩写形式。由(2.4.7) 有

$$\mathbf{K}_{bai} = -\mathbf{F}_i \mathbf{E}_i^{-1}$$
 (2. 4. 8a)

$$\boldsymbol{K}_{aai} = \boldsymbol{E}_i^{-1} \tag{2.4.8b}$$

$$\boldsymbol{K}_{bbi} = \boldsymbol{G}_i + \boldsymbol{F}_i \boldsymbol{E}_i^{-1} \boldsymbol{F}_i^{\mathrm{T}}$$
(2.4.8c)

其中i = 1, 2。定义

$$\boldsymbol{n}_{k} = \boldsymbol{F}_{1} \boldsymbol{n}_{k-1} - \boldsymbol{G}_{1} \boldsymbol{d}_{k} \qquad (2. 4. 9a)$$

$$\boldsymbol{d}_{k-1} = \boldsymbol{E}_1 \boldsymbol{n}_{k-1} + \boldsymbol{F}_1^{\mathrm{T}} \boldsymbol{d}_k \qquad (2. 4. 9\mathrm{b})$$

$$\mathbf{n}_{k+1} = \mathbf{F}_2 \mathbf{n}_k - \mathbf{G}_2 \mathbf{d}_{k+1}$$
 (2.4.10a)

$$\boldsymbol{d}_{k} = \boldsymbol{E}_{2}\boldsymbol{n}_{k} + \boldsymbol{F}_{2}^{\mathrm{T}}\boldsymbol{d}_{k+1} \qquad (2. 4. 10\mathrm{b})$$

及

$$n_{k+1} = F_c n_{k-1} - G_c d_{k+1}$$
 (2.4.11a)

$$\boldsymbol{d}_{k-1} = \boldsymbol{E}_{c}\boldsymbol{n}_{k-1} + \boldsymbol{F}_{c}^{\mathrm{T}}\boldsymbol{d}_{k+1} \qquad (2. 4. 11 \mathrm{b})$$

由此可以导出下列区段合并方程[13]

$$G_{c} = G_{2} + F_{2}(G_{1}^{-1} + E_{2})^{-1}F_{2}^{T}$$
 (2.4.12a)

$$\boldsymbol{E}_{c} = \boldsymbol{E}_{1} + \boldsymbol{E}_{1}^{\mathrm{T}} (\boldsymbol{E}_{2}^{-1} + \boldsymbol{G}_{1})^{-1} \boldsymbol{F}_{1}$$
 (2.4.12b)

$$\boldsymbol{F}_{c} = \boldsymbol{F}_{2}(\boldsymbol{I} + \boldsymbol{G}_{1}\boldsymbol{E}_{2})^{-1}\boldsymbol{F}_{1} \qquad (2. 4. 12c)$$

考虑特征值问题

$$\begin{bmatrix} \mathbf{K}_{aa1} & \mathbf{K}_{ab1} \\ \mathbf{K}_{ba1} & \mathbf{K}_{aa2} + \mathbf{K}_{bb1} & \mathbf{K}_{ab2} \\ \mathbf{K}_{ba2} & \mathbf{K}_{bb2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k-1} \\ \mathbf{x}_{k} \\ \mathbf{x}_{k+1} \end{bmatrix} = \mathbf{0} \quad (2.4.13)$$

令 $x_{k+1} = 0$,而 $x_k, x_{k-1} \neq 0$,则有特征值问题

$$\begin{bmatrix} \boldsymbol{K}_{aa1} & \boldsymbol{K}_{ab1} \\ \boldsymbol{K}_{ba1} & \boldsymbol{K}_{aa2} + \boldsymbol{K}_{bb1} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{k-1} \\ \boldsymbol{x}_{k} \end{bmatrix} = \boldsymbol{0}$$
(2.4.14)

由于

$$\begin{bmatrix} \boldsymbol{K}_{aa1} & \boldsymbol{K}_{ab1} \\ \boldsymbol{K}_{ba1} & \boldsymbol{K}_{bb1} + \boldsymbol{K}_{aa2} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{K}_{ba1} \boldsymbol{K}_{aa1}^{-1} & \boldsymbol{I} \end{bmatrix} \times \begin{bmatrix} \boldsymbol{K}_{aa1} & \boldsymbol{K}_{ab1} \\ \boldsymbol{0} & \boldsymbol{K}_{aa2} + \boldsymbol{K}_{bb1} - \boldsymbol{K}_{ba1} \boldsymbol{K}_{aa1}^{-1} \boldsymbol{K}_{ab1} \end{bmatrix} (2.4.15)$$

对给定的 ρ_{\pm} ,式(2.4.14)的特征值计数为

$$J_{Rc}(\rho_{\#}) = s\{\mathbf{K}_{aa2} + \mathbf{K}_{bb1} - \mathbf{K}_{ba1}\mathbf{K}_{aa1}^{-1}\mathbf{K}_{ab1}\} + s\{\mathbf{K}_{aa1}\} = s\{\mathbf{G}_{1} + \mathbf{E}_{2}^{-1}\} + s\{\mathbf{E}_{1}^{-1}\}$$
(2.4.16)

令
$$J_{R_1}(\rho_{\pm}) = s\{\mathbf{K}_{aa1}\}, J_{R_2}(\rho_{\pm}) = s\{\mathbf{K}_{aa2}\}, \mathbf{M}$$

 $J_{R_c}(\rho_{\pm}) = J_{R_1}(\rho_{\pm}) + J_{R_2}(\rho_{\pm}) - s\{\mathbf{E}_2\} + s\{\mathbf{G}_1 + \mathbf{E}_2^{-1}\}$
(2.4.17)

结合区段合并方程(2.4.12)迭代执行上述方程,可以得到无约束 时特征值问题(2.3.1)的特征值计数。

对于特征值问题

$$\begin{bmatrix} \boldsymbol{K}_{aa2} & \boldsymbol{K}_{ab2} \\ \boldsymbol{K}_{ba2} & \boldsymbol{K}_{bb2} + \boldsymbol{S}_{f}^{-1} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{k} \\ \boldsymbol{x}_{k+1} \end{bmatrix} = \boldsymbol{0} \qquad (2. 4. 18)$$

由 Schur 分解

$$\begin{bmatrix} \mathbf{K}_{aa2} & \mathbf{K}_{ab2} \\ \mathbf{K}_{ba2} & \mathbf{K}_{bb2} + \mathbf{S}_{f}^{-1} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{K}_{ba2} \mathbf{K}_{aa2}^{-1} & \mathbf{I} \end{bmatrix} \times \begin{bmatrix} \mathbf{K}_{aa2} & \mathbf{K}_{ab2} \\ \mathbf{0} & \mathbf{S}_{f}^{-1} + \mathbf{K}_{bb2} - \mathbf{K}_{ba2} \mathbf{K}_{aa2}^{-1} \mathbf{K}_{ab2} \end{bmatrix} (2.4.19)$$

可知问题(2.4.18)的特征值计数为 $J_{RS2}(\rho_{\#}) = s\{\mathbf{S}_{\mathfrak{f}}^{-1} + \mathbf{G}_{\mathfrak{f}}\} + s\{\mathbf{K}_{aa2}\} = J_{R2}(\rho_{\#}) + s\{\mathbf{S}_{\mathfrak{f}}^{-1} + \mathbf{G}_{\mathfrak{f}}\}$ (2.4.20)

现在考虑特征值问题

$$\begin{bmatrix} \mathbf{K}_{aa1} & \mathbf{K}_{ab1} \\ \mathbf{K}_{ba1} & \mathbf{K}_{aa2} + \mathbf{K}_{bb1} & \mathbf{K}_{ab2} \\ \mathbf{K}_{ba2} & \mathbf{K}_{bb2} + \mathbf{S}_{f}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k-1} \\ \mathbf{x}_{k} \\ \mathbf{x}_{k+1} \end{bmatrix} = \mathbf{0} \quad (2.4.21)$$

令 $x_{k+1} = 0$,且 $J_0(\rho_{\#})$ 为下列特征值问题的特征值计数

$$\begin{bmatrix} \mathbf{K}_{aa1} & \mathbf{K}_{ab1} \\ \mathbf{K}_{ba1} & \mathbf{K}_{aa2} + \mathbf{K}_{bb1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k-1} \\ \mathbf{x}_{k} \end{bmatrix} = \mathbf{0}$$
(2. 4. 22)

则

$$J_{0}(\rho_{\#}) = J_{Rc}(\rho_{\#}) \qquad (2.4.23)$$

由式(2.4.5),这一问题的 $D(\rho_{\#})$ 为

 $\boldsymbol{D}(\rho_{\pm}) = (\boldsymbol{S}_{f}^{-1} + \boldsymbol{K}_{bb2}) - \begin{bmatrix} \boldsymbol{0} & \boldsymbol{K}_{ba2} \end{bmatrix} \begin{bmatrix} \boldsymbol{K}_{aa1} & \boldsymbol{K}_{ab1} \\ \boldsymbol{K}_{ba1} & \boldsymbol{K}_{bb1} + \boldsymbol{K}_{aa2} \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{K}_{ab2} \end{bmatrix}$ (2, 4, 24)

为求上式中的分块矩阵之逆,令

$$C = \begin{bmatrix} K_{aa1} & K_{ab1} \\ K_{ba1} & K_{aa2} + K_{bb1} \end{bmatrix}^{-1} \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix} = \begin{bmatrix} E_1^{-1} & -E_1^{-1}F_1^T \\ -F_1E_1^{-1} & E_2^{-1} + G_1 + F_1E_1^{-1}F_1^T \end{bmatrix}^{-1}$$
(2.4.25)

由矩阵求逆引理,可得

$$C_{4} = \begin{bmatrix} E_{2}^{-1} + G_{1} + F_{1}E_{1}^{-1}F_{1}^{T} - (F_{1}E_{1}^{-1})E_{1}(E_{1}^{-1}F_{1}^{T}) \end{bmatrix}^{-1} = (E_{2}^{-1} + G_{1})^{-1}$$
(2. 4. 26)

则

$$D(\rho_{\pm}) = S_{f}^{-1} + G_{2} + F_{2}E_{2}^{-1}F_{2}^{T} - (F_{2}E_{2}^{-1})(G_{1} + E_{2}^{-1})^{-1}(E_{2}^{-1}F_{2}^{T}) = S_{f}^{-1} + G_{2} + F_{2}(I + G_{1}E_{2})^{-1}G_{1}F_{2}^{T} = S_{f}^{-1} + G_{c}$$
(2.4.27)

因此式(2.4.21)的特征值计数为

 $J_{RSc}(\rho_{\#}) = J_{Rc}(\rho_{\#}) + s\{\mathbf{S}_{f}^{-1} + \mathbf{G}_{c}\}$ (2.4.28) 结合式(2.4.12)执行上式,可以得到原特征值问题(2.3.1)的特 征值计数。

2.4.3 算法描述

这里给出定常系数 Hamilton 差分方程边值问题一阶特征值

的计算方法,也就是系统最优 H_{∞} 范数的计算方法,时变系统的算法是类似的。

A:有限时间情况

Step0. {选择合适的 $\gamma_{\#}^{-2}$; $G = BB^{T} - \gamma_{\#}^{-2}DD^{T}$; F = A; $E = H^{T}H$ }

Step1. { $E_1 = E$; $G_1 = G$; $F_1 = F$; $J_{R_1} = 0$; $E_2 = S_f$; $G_2 = 0$ $F_2 = I$; $J_{R_2} = 0$ }

Step2. for $(k = 1; k \leq N - 1; k + +)$ { {由(2.4.12a ~ c), (2.4.28) 计算 E_c, G_c, F_c 和 J_{RSc} } { $E_2 = E_c; G_2 = G_c; E_2 = F_c; J_{R2} = J_{RSc}$ } if $(J_{RSc} > 0)$ {中断循环;选择较小的 γ_{\pm}^{-2} 重新开 始 } }

Step3. if $(J_{RSc} > 0)$

 $\{\gamma_{\pm}^{-2} \neq \gamma_{opt}^{-2}$ 的一个上界(upperbound),在重新计算时应减小}

else

 $\{\gamma_{\#}^{-2} \in \gamma_{opt}^{-2}$ 的一个下界(lowerbound)}

if (upperbound-lowerbound) $> \varepsilon$ (ε 是预先选定的小 正实数)

{增加 $\gamma_{\#}^{-2}$ 重新计算}

else

{break}

迭代可以在满足精度要求后终止,并取 lowerbound 作为 γ_{opt}^{-2} 。

另外,上述算法中计算出的序列 E_k 就是 M_{k_0} 当 N 趋向于无穷时, M_N 趋近于 Riccati 代数方程(2.1.26)的解^[1,4]。

B:无限时间情况

Step1. {选择合适的 γ_{\pm}^{-2} ; $F_c = A$; $G_c = BB^{\mathrm{T}} - \gamma_{\pm}^{-2}DD^{\mathrm{T}}$; $E_c =$

 $\boldsymbol{H}^{\mathrm{T}}\boldsymbol{H}$ }

Step2. while $(\| F_{\varepsilon} \| > \varepsilon)$

 $\{ E_1 = E_2 = E_c; G_1 = G_2 = G_c; F_1 = F_2 = F_c; J_{R_1} = J_{R_2} = 0 \}$

{ 由(2.4.12), (2.4.17) 计算 E_c , G_c , F_c 及 J_{Rc} }

if $(J_{Rc} > 0)$

{中断循环;选择较小的 γ_{\pm}^{-2} 重新开始}

2.5 算 例

算例 1.

首先考虑文献1中介绍的一个简单问题,系统参数为:

A = 1 B = 1 D = 1 H = 1

表 2-1 给出了不同区间长度时的 γ_{opt} 值。当区间长度 N 趋近无穷 时, γ_{opt} 趋近于常数 1,与文献 1 中的结论一致。

表 2-1

算例1的 γ_{out}

Ν	2^{1}	2^{2}	2^{3}	2^{4}
$\gamma_{ m opt}$	0.54658	0.98340	0.99550	0.99883
Ν	2^{5}	2^{6}	2^{7}	2^{8}
$\gamma_{ m opt}$	0.99970	0.99993	0.99998	0.99999

算例 2:

算例选自参考文献 5, 是一个 4 阶离散系统, 系统数据如下。

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -0.1 & 0 \\ 0 & 1 & 0 & -0.1 \\ 0.033 & -0.033 & 1 & 0 \\ 0.033 & -0.033 & -0.007 & 1 \end{bmatrix}$$

表 2-2 给出了不同时间长度的 γ_{opt} 值。当N 趋近无穷时, γ_{opt} 趋近于 常数 0.18884。

表 2-2

算例 2 的 Y_{opt}

N	2^{2}	2^{3}	2^{4}	2^{5}
γ_{opt}	0.13803	0.15944	0.18709	0.18870
N	2^{6}	27	2^{8}	2 ⁹
γ_{opt}	0.18884	0.18884	0.18884	0.18884

文献 5 中研究的是状态反馈控制问题,文中给出的 γ 最小值 为 $\gamma_* \approx 0.20424$ 。按照本章方法计算,当 N 足够大时,最优 H_{∞} 范 数是 $\gamma_{opt} \approx 0.18884$,显然 $\gamma_* > \gamma_{opt}$,与定理 2.2 中的结论一致。这 是因为本章研究的是全信息控制问题。

图 2.1 至图 2.3 给出了 $\gamma^{-2} = \gamma_{opt}^{-2}$ 时,不同区间长度内 Riccati 方程解的变化情况。由图中可见 Riccati 方程的解的变化趋势。图 2.4 至图 2.9 给出了 $\gamma^{-2} = 0.5 \times \gamma_{opt}^{-2}$ 时,不同区间长度内 Riccati 方 程解的变化情况,随着时间的增长,Riccati 方程的解趋于常数 值。

图 2.2 算例 2Riccati 方程的解 $(N = 2^4, \gamma^{-2} = \gamma_{opt}^{-2})$

图 2.3 算例 2Riccati 方程的解 $(N = 2^5, \gamma^{-2} = \gamma_{opt}^{-2})$

图 2.4 算例 2Riccati 方程的解 $(N = 2^3, \gamma^{-2} = 0.5 \times \gamma_{opt}^{-2})$

图 2.5 算例 2Riccati 方程的解 $(N = 2^4, \gamma^{-2} = 0.5 \times \gamma_{opt}^{-2})$

图 2.6 算例 2Riccati 方程的解 $(N = 2^5, \gamma^{-2} = 0.5 \times \gamma^{-2}_{opt})$

图 2.7 算例 2Riccati 方程的解 $(N = 2^6, \gamma^{-2} = 0.5 \times \gamma_{opt}^{-2})$

图 2.8 算例 2Riccati 方程的解 $(N = 2^7, \gamma^{-2} = 0.5 \times \gamma_{opt}^{-2})$

图 2.9 算例 2Riccati 方程的解 $(N = 2^8, \gamma^{-2} = 0.5 \times \gamma_{out}^{-2})$

式(2.1.2)中的 H 矩阵实际上体现了对状态的加权,H 矩阵 变化后系统的最优性能指标也会相应地产生变化。将 H 矩阵中所 有元素乘 2 后进行与上文中同样的计算,结果列于表 2-3 中。

表 2-3

H矩阵变化后算例 2 的 γ_{opt}

Ν	2^{2}	2 ³	2^{4}	2^{5}
$\gamma_{ m opt}$	0.21798	0.24324	0.26197	0.26332
Ν	2^{6}	27	2 ⁸	2 ⁹
$\gamma_{ m opt}$	0.26333	0.26333	0.26333	0.26333

算例 3:

算例 3 是一个 7 维离散系统,系统数据为:

第二章 离散系统 H...全信息控制

 $\boldsymbol{A} = \begin{bmatrix} 1.0 & -32.37 & 0.0 & 32.3 & 0.0 & 0.7 & 0.0 \\ -0.00014 & 1.0 & 10.0 & 0.0 & 2.0 & 0.0 & 0.3 \\ -0.0111 & -34.72 & 1.0 & 0.0 & 0.0 & 1.4 & 0.0 \\ 0.0 & 0.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 1.7 \\ 0.0 & -1.0 & 0.1 & 3.2 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.1 & -1.0 & 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$ $\boldsymbol{B} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.2 \\ 0.0005 \\ 0.1 \\ 0.02 \\ 0.01 \end{bmatrix} \qquad \boldsymbol{D} = \begin{bmatrix} 0.0 \\ -0.001064 \\ -0.338 \\ 0.0 \\ 0.2 \\ 0.1 \\ 0.01 \end{bmatrix}$

H = diag[0.5, 0.5, 0.5, 1.0, 1.0, 1.0]

表 2-4 给出不同时间长度的 γ_{opt} 值。同样,当 N 趋近无穷时, γ_{opt} 趋近于一个常数。

表 2-4

算例 3 的 γ_{out}

N	2^{2}	2 ³	2^{4}	2^{5}
$\gamma_{ m opt}$	8.5082	8.5748	8.6235	8.8430
N	2^{6}	27	2 ⁸	2 ⁹
$\gamma_{ m opt}$	17.100	20.217	20.237	20.237

将 *H* 矩阵中所有元素乘 0.5 并进行与上文中同样的计算,结 果列于表 2-5 中。 表 2-5

H矩阵变化后算例 3 的 γ_{ent}

N	2^{2}	2^{3}	2^{4}	2^{5}
$\gamma_{ m opt}$	6.3036	6.4477	6.4631	6.5564
Ν	2^{6}	2^{7}	2 ⁸	2 ⁹
$\gamma_{ m opt}$	9.1197	10.338	10.344	10.344

算例 4:

第四个算例是文献 14 中一个连续系统的算例,由该连续系统 离散化得到一个离散系统,然后计算其 γ_{opt} ,并将结果与连续系统 的结果比较。结果分别列于表 2-6 和表 2-7 中。该连续系统的数据 为

$$\boldsymbol{A} = \begin{bmatrix} -0.0605 & -32.37 & 0.0 & 32.27 \\ -0.00014 & -1.475 & 10.0 & 0.0 \\ -0.0111 & -34.72 & -2.793 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \end{bmatrix}$$
$$\boldsymbol{B}_{2} = \begin{bmatrix} 0.0 \\ -0.001064 \\ -0.3380 \\ 0.0 \end{bmatrix} \quad \boldsymbol{B}_{1} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.2 \\ 0.0005 \end{bmatrix}$$

C = diag[0.5, 0.5, 1.0, 1.0]

采用零阶保持器,采样间隔取 0.2,得到离散化的系统数据为

	0.9898	-0.4083	-1.2800	6.4051 -
4 —	-0.0005	-0.5568	-0.1923	-0.0021
A —	-0.00016	0.6692	-0.5317	-0.0018
	-0.00006	0.1567	-0.0126	0.9998 _

第二章 离散系统 H...全信息控制

$$\boldsymbol{B} = \begin{bmatrix} 0.\ 0555 \\ -\ 0.\ 0153 \\ 0.\ 0044 \\ -\ 0.\ 0018 \end{bmatrix} \quad \boldsymbol{D} = \begin{bmatrix} -\ 0.\ 0324 \\ 0.\ 0090 \\ -\ 0.\ 0025 \\ 0.\ 0012 \end{bmatrix}$$
$$\boldsymbol{H} = \operatorname{diag}[0.\ 5, 0.\ 5, 1.\ 0, 1.\ 0]$$

表 2-6

算例 4 的 γ_{opt} 及 γ_{opt}^{-2} (采样间隔 0.2)

Ν	2^{2}	2 ³	2^{4}	2^{5}
$\gamma_{ m opt}$	0.07056	0.10569	0.12891	0.44868
$\gamma_{ m opt}^{-2}$	200.83	89.521	60.180	4.9674
Ν	2 ⁶	27	2 ⁸	2 ⁹
$\gamma_{ m opt}$	1.0830	1.1675	1.1678	1.1678
$\gamma_{ m opt}^{-2}$	0.85263	0.73367	0.73331	0.73331

采用零阶保持器,采样间隔取 0.1,得离散化系统数据为

 $\boldsymbol{A} = \begin{bmatrix} 0.9944 & -1.7741 & -0.9405 & 3.2107 \\ -0.0004 & -0.2043 & 0.4156 & -0.0005 \\ -0.0005 & -1.4419 & -0.2501 & -0.0012 \\ -0.00004 & -0.1130 & 0.0464 & 0.9999 \end{bmatrix}$ $\boldsymbol{B} = \begin{bmatrix} 0.0125 \\ -0.0111 \\ -0.0156 \\ -0.0012 \end{bmatrix} \quad \boldsymbol{D} = \begin{bmatrix} -0.0073 \\ 0.0065 \\ -0.0093 \\ 0.0007 \end{bmatrix}$ $\boldsymbol{H} = \text{diag}[0.5, 0.5, 1.0, 1.0]$

表 2-7	异例 4 的 / _{opt} 及 / _{opt} (朱 柱 间 隔 0.1)				
N	2^{2}	2^{3}	2^{4}	2^{5}	
$\gamma_{ m opt}$	0.04049	0.06919	0.10505	0.12765	
$\gamma_{ m opt}^{-2}$	609.849	208.833	90.6187	61.3742	
N	2^{6}	27	2 ⁸	2 ⁹	
$\gamma_{ m opt}$	0.44523	1.08211	1.16747	1.16777	
$\gamma_{ m opt}^{-2}$	5.04462	0.85400	0.73367	0.73331	

文献 14 中连续系统的计算结果为 $\gamma_{opt}^{-2} = 0.73331108, 显然与$ 这里的结果是一致的。与前几个算例类似,这里也将*H*矩阵中所有元素乘 2 并进行与上文中同样的计算,结果列于表 2-8 中。

表 2-8

Η 矩阵变化后算例 4 的 γ_{opt} 及 γ⁻²_{opt}

N	2^{2}	2^{3}	2^{4}	2^{5}
$\gamma_{ m opt}$	0.13768	0.19814	0.24460	0.73812
$\gamma_{ m opt}^{-2}$	52.751	25.472	16.714	1.8354
N	2^{6}	2^{7}	2 ⁸	2 ⁹
$\gamma_{ m opt}$	1.3431	1.3769	1.3770	1.3770
$\gamma_{ m opt}^{-2}$	0.55435	0.52746	0.52743	0.52742

本章建立了离散 H_{∞} 全信息控制系统的 γ_{opt}^{-2} 与 Hamilton 差分 系统一阶特征值之间的对应关系。并基于离散 Legendre 变换及广 义 Rayleigh 商的概念建立了 γ_{opt}^{-2} 与矩阵广义特征值的对应关系。 最后介绍了离散 H_{∞} 控制系统最优 H_{∞} 诱导范数的计算方法和几 个数值算例。类似地,对于连续系统 H_{∞} 全信息控制, γ_{opt}^{-2} 则是 Hamilton 微分方程两端点边值问题的一阶特征值,在本书的第七 章对此有详细的介绍。

参考文献

- Basar T, Bernhard P. H_∞-optimal Control and Related Minimax Design Problems. Boston: Birkhöuser,1995
- 2 Green M , Limbeer D J N. Linear Robust Control. New Jersey: Prentice Hall, 1995
- 3 Yaesh I, Shaked U. A transfer function approach to the problems of discrete – time systems: H_∞-optimal linear control and filtering. IEEE Trans Automatic Control, 1991,36: 1264~1271
- Yaesh I, Shaked U. Minimum H_∞-norm regulation of linear discrete time systems and its relation to linear quadratic discrete games. IEEE IEEE Trans Automatic Control, 1990,35: 1061~1064
- 5 Paz R A, Medanic J V. H_∞ Control in Discrete Time: State Feedback Control and Norm Bounds. International Journal of Control, 1992, 55 (6): 1405~1424
- 6 Bohner M. Discrete Linear Hamiltonian Eigenvalue Problems. Computers & Mathematics with Applications, 1998, 36: 179~192
- 7 Bohner M. Linear Hamiltonian Difference Systems: Disconjugacy and Jacobi Type Conditions. Journal of Mathematical Analysis and Applications, 1996,199: 804~826
- 8 Halanay A, Ionescu V. Time varying discrete Hamiltonian systems.
 Computers & Mathematics with Applications, 1998, 36: 307~326
- 9 Wittrick W H, Williams F W. A general algorithm for computing natural frequencies of elastic structures. Quarterly Journal of Mechanics and Applied Mathematics, 1971,24: 263~284
- 10 胡海昌. 多自由度结构固有振动理论. 北京: 科学出版社, 1987
- 11 Balakrishnan A V. Generalization of the Wittrick Williams formula for counting modes of flexible structures. Journal of Guidance Control and Dynamics, 1995, 18: 1410~1415
- 12 Zhong W X, Williams F W, Bennett P N. Extension of the Wittrick-

Williams algorithm to mixed variable systems. Journal of Vibration and Acoustics, 1997,119(3): 334~340

- 13 Zhong W X, Lin J H, Qiu C H. Computational structural mechanics and optimal control — the simulation of substructural chain theory to linear quadratic optimal control problems. International Journal for Numerical Methods in Engineering, 1992,33: 197~211
- 14 钟万勰. H_∞状态反馈与瑞利商精细积分. 计算力学学报, 1998, 15(4):
 1~8
- 15 Zhong W X, Howson W P, Williams F W. H_∞ filtering with secure eigenvalue calculation and precise integration. International Journal for Numerical Methods in Engineering, 1999,46: 1017~1030

第三章 离散系统 H_∞滤波

卡尔曼(Kalman) 滤波器在含噪声信号的处理中应用非常广 泛,这种滤波器要求知道信号的产生机理及噪声的统计特性,然而 在 许多情况下只能得到信号的近似模型,有时也无法获得信号的 统 计特性,这在一定程度上限制了卡尔曼滤波器的应用。另外,当 信 号模型存在不确定性时,卡尔曼滤波器的鲁棒性也较差。近年 来, H_{∞} 滤波器引起越来越多的兴趣,并且已经取得许多理论研究 成果^[1~3]。 H_{∞} 滤波器可以确保从噪声到估计误差之间传递函数的 H_{∞} 范数小于某个给定的正数,且噪声可以是任意的有界信号。与 卡尔曼滤波器相比, H_{∞} 滤波器对模型参数的不确定性不太敏感, 鲁棒性较好。

在 H_{∞} 滤波器的设计中,系统最优 H_{∞} 范数的计算是一个基本环节。针对这一问题,本章在介绍 H_{∞} 滤波器设计理论的基础上讨论了离散 H_{∞} 滤波系统的最优范数计算问题。首先建立了 γ_{opt} 与相关的 Hamilton 差分系统特征值之间的联系,进而给出了 γ_{opt} 与广义矩阵特征值之间的对应关系。然后介绍了计算 γ_{opt} 的方法。

3.1 离散 H_∞ 滤波

考虑下述线性时变离散系统在有限区间上的滤波问题

 $\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{D}_k \mathbf{w}_k, \mathbf{x}_0 = \mathbf{0}$ (3.1.1)

 $\mathbf{y}_k = \mathbf{C}_k \mathbf{x}_k + \mathbf{v}_k \tag{3.1.2}$

 $\boldsymbol{z}_k = \boldsymbol{H}_k \boldsymbol{x}_k \tag{3.1.3}$

其中 $k \in [0, N-1]$,状态向量 $x_k \in \mathbf{R}^n$,量测向量 $y_k \in \mathbf{R}^q$,过程噪声向量 $w_k \in \mathbf{R}^t$,量测噪声向量 $v_k \in \mathbf{R}^m$,状态向量的线性组合 $z_k \in \mathbf{R}^p$ 是需要估计的向量。其余矩阵均有恰当的维数。对于给定的正数7及任意的 $w_k \in L_2[0, N-1]$ 及 $\hat{x}_0 \in \mathbf{R}^n$,要求所设计的滤波器满足

$$\frac{1}{2}\sum_{k=0}^{N-1} (\boldsymbol{z}_k - \hat{\boldsymbol{z}}_k)^{\mathrm{T}} (\boldsymbol{z}_k - \hat{\boldsymbol{z}}_k) < \frac{1}{2} \gamma^2 \Big[\sum_{k=0}^{N-1} (\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{w}_k + \boldsymbol{v}_k^{\mathrm{T}} \boldsymbol{v}_k) + (\hat{\boldsymbol{x}}_0 - \boldsymbol{x}_0)^{\mathrm{T}} \boldsymbol{\mathcal{Q}}_0^{-1} (\hat{\boldsymbol{x}}_0 - \boldsymbol{x}_0) \Big]$$

(3.1.4)

其中 \hat{z}_k 是状态滤波 \hat{x}_k 的线性组合 $\hat{z}_k = H_k \hat{x}_k, \hat{x}_0$ 是对初始状态的估 计,并且 $Q_0^{-1} > 0$ 。最优 H_∞ 滤波的性能指标定义为^[1,3]

$$\gamma_{\text{opt}:} = \inf_{\hat{z}} \sup_{\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{x}_{0}} \frac{\|\boldsymbol{z}_{k} - \hat{\boldsymbol{x}}_{k}\|_{2}}{\|\boldsymbol{x}_{0} - \hat{\boldsymbol{x}}_{0}\|_{2} + \|\boldsymbol{w}_{k}\|_{2} + \|\boldsymbol{v}_{k}\|_{2}}$$
(3.1.5)

其中 || · || 2表示信号的 2- 范数。

对预先给定的噪声抑制指标 $\gamma > 0$,当且仅当下列离散 Riccati 方程存在稳定对称解 $\Sigma_k > 0$ 时,存在满足上述条件的 H_{∞} 滤波器。

 $\boldsymbol{\Sigma}_{k+1} = \boldsymbol{A}_{k} (\boldsymbol{\Sigma}_{k}^{-1} + \boldsymbol{C}_{k}^{\mathrm{T}} \boldsymbol{C}_{k} - \boldsymbol{\gamma}^{-2} \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k})^{-1} \boldsymbol{A}_{k}^{\mathrm{T}} + \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}}$

$$\boldsymbol{\Sigma}_{0} = \boldsymbol{Q}_{0} \tag{3.1.6}$$

而相应的中心 H。滤波器为

$$\hat{\boldsymbol{z}}_k = \boldsymbol{H}_k \hat{\boldsymbol{x}}_k \tag{3.1.7a}$$

$$\hat{\boldsymbol{x}}_{k+1} = \boldsymbol{A}_k \hat{\boldsymbol{x}}_k + \boldsymbol{K}_k (\boldsymbol{y}_k - \boldsymbol{C}_k \hat{\boldsymbol{x}}_k) \qquad (3.1.7b)$$

其中 K_k 是滤波增益

 $K_{k} = A_{k} \Sigma_{k} (I - \gamma^{-2} H_{k}^{T} H_{k} + C_{k}^{T} C_{k})^{-1} C_{k}^{T}$ (3.1.8) 显然,当 $\gamma = 0$ 时,滤波器的结构与卡尔曼滤波器是相同的;而当 γ 趋近于 γ_{opt} 时,Riccati 方程解矩阵的特征值将趋近于无穷大^[2]。定 义 一个 γ 的集合 Γ_{F} ,其中所有元素 $\gamma > 0$ 且使得 Riccati 方程 (3.1.6) 存在稳定对称正定解,则 γ_{opt} : = inf{ $\gamma : \gamma \in \Gamma_F$ }^[4]。

基于线性时变系统 H_∞ 滤波器的结构,可以很容易地给出下 列线性定常系统

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{D}\boldsymbol{w}_k, \boldsymbol{x}_0 = \boldsymbol{0} \quad (3.1.9)$$

$$\mathbf{y}_k = \mathbf{C}\mathbf{x}_k + \mathbf{v}_k \tag{3.1.10}$$

$$\boldsymbol{z}_k = \boldsymbol{H} \boldsymbol{x}_k \tag{3.1.11}$$

在有限区间 $k \in [0, N-1]$ 上的 H_{∞} 滤波器。对预先给定的噪声抑制指标 $\gamma > 0$,当且仅当下列 Riccati 方程存在稳定对称解 $\Sigma_k > 0$ 时,存在满足条件的 H_{∞} 滤波器。

 $\boldsymbol{\Sigma}_{k+1} = \boldsymbol{A}(\boldsymbol{\Sigma}_{k}^{-1} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{H}^{\mathrm{T}}\boldsymbol{H})^{-1}\boldsymbol{A}^{\mathrm{T}} + \boldsymbol{D}\boldsymbol{D}^{\mathrm{T}}, \boldsymbol{\Sigma}_{0} = \boldsymbol{Q}_{0}$ (3.1.12)

其中心 H.。滤波器的形式为

$$\hat{\boldsymbol{z}}_k = \boldsymbol{H}\hat{\boldsymbol{x}}_k \tag{3.1.13a}$$

$$\hat{\boldsymbol{x}}_{k+1} = \boldsymbol{A}\hat{\boldsymbol{x}}_k + \boldsymbol{K}_k(\boldsymbol{y}_k - \boldsymbol{C}\hat{\boldsymbol{x}}_k) \qquad (3.1.13b)$$

其中 K, 是滤波增益

 $\boldsymbol{K}_{k} = \boldsymbol{A}\boldsymbol{\Sigma}_{k}(\boldsymbol{I} - \boldsymbol{\gamma}^{-2}\boldsymbol{H}^{\mathrm{T}}\boldsymbol{H} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{C})^{-1}\boldsymbol{C}^{\mathrm{T}} \qquad (3.1.14)$

现在考虑定常系统在无限区间内的 H_{∞} 滤波问题。对预先给定的噪声抑制指标 $\gamma > 0$,当且仅当下列 Riccati 方程存在稳定对称解 $\Sigma_{k} > 0$ 时,存在满足条件的 H_{∞} 滤波器。

 $\Sigma = A(\Sigma^{-1} + C^{T}C - \gamma^{-2}H^{T}H)^{-1}A^{T} + DD^{T}$ (3.1.15) 这种情况下的中心 H_{∞} 滤波器形式为

$$\hat{\boldsymbol{z}}_k = \boldsymbol{H}\hat{\boldsymbol{x}}_k \tag{3.1.16a}$$

 $\hat{\boldsymbol{x}}_{k+1} = \boldsymbol{A}\hat{\boldsymbol{x}}_k + \boldsymbol{K}(\boldsymbol{y}_k - \boldsymbol{C}\hat{\boldsymbol{x}}_k) \qquad (3.1.16b)$

其中 K 是稳态滤波增益

 $K = A\Sigma (I - \gamma^{-2}H^{T}H + C^{T}C)^{-1}C^{T}$ (3.1.17) 前面所介绍的 H_{∞} 滤波器都利用了当前的测量值(current measurement),文献 12 中称其为后验滤波器(a posteriori filter)。 如果滤波器只能利用前一时刻的测量值,即一步延迟测量值(one step delay measurement),则称之为先验滤波器(a priori filter), 这种滤波器的形式为

$$\hat{\boldsymbol{z}}_k = \boldsymbol{H}\hat{\boldsymbol{x}}_k \tag{3.1.18a}$$

 $\hat{\boldsymbol{x}}_{k+1} = \boldsymbol{A}\hat{\boldsymbol{x}}_k + \boldsymbol{K}_o(\boldsymbol{y}_k - \boldsymbol{C}\hat{\boldsymbol{x}}_k)$ (3.1.18b)

其中的滤波增益 K_a为

$$\boldsymbol{K}_{o} = \boldsymbol{A} \widetilde{\boldsymbol{\Sigma}} \boldsymbol{C}^{\mathrm{T}} (\boldsymbol{I} + \boldsymbol{C} \widetilde{\boldsymbol{\Sigma}} \boldsymbol{C}^{\mathrm{T}})^{-1} \qquad (3.1.19)$$

而 Σ则需要满足下列形式的 Riccati 方程

 $\widetilde{\boldsymbol{\Sigma}} = \boldsymbol{D}\boldsymbol{D}^{\mathrm{T}} + \boldsymbol{A}\widetilde{\boldsymbol{\Sigma}}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{A}\widetilde{\boldsymbol{\Sigma}}\boldsymbol{C}^{\mathrm{T}}(\boldsymbol{I} + \boldsymbol{C}\boldsymbol{M}\boldsymbol{C}^{\mathrm{T}})^{-1}\boldsymbol{C}\widetilde{\boldsymbol{\Sigma}}\boldsymbol{A}^{\mathrm{T}} +$

 $\Sigma H_{\gamma}^{\mathrm{T}} (I + H_{\gamma} \Sigma H_{\gamma}^{\mathrm{T}})^{-1} H_{\gamma} \Sigma$ (3.1.20) 式中的 $H_{\gamma} = \gamma^{-1} H_{\circ}$

先验 H_{∞} 滤波与上一章介绍的离散 H_{∞} 全信息反馈控制恰好 构成对偶系统。这一点和连续系统的 H_{∞} 滤波与 H_{∞} 全信息反馈 控制构成对偶问题有类似之处,但也存在着区别。对于连续系统, 无论滤波还是控制,都可以利用当前状态的量测信息,本书中所讨 论的连续系统的滤波和控制问题都利用了当前的状态量测信息。 对于离散系统,通常所说的 H_{∞} 滤波器,就是利用了当前量测信息 的后验滤波器^[12]。

需 要指出的是,先验和后验 H_{∞} 滤波器的最优 H_{∞} 性能指标 是不同的。对于给定的 $\gamma > 0$,如果式(3.1.20)存在正定解 $\Sigma > 0$, 则 式(3.1.15) 必然存在正定解 $\Sigma > 0$ 。这是因为两者之间存在下 列关系

$$\boldsymbol{\Sigma}^{-1} = \boldsymbol{\Sigma}^{-1} - \boldsymbol{H}_{\boldsymbol{\gamma}}^{\mathrm{T}} \boldsymbol{H}_{\boldsymbol{\gamma}} \qquad (3.1.21)$$

显然, $\Sigma > 0$ 并不能保证 $\Sigma > 0$,所以可以预料,通常所说的 H_{∞} 滤 波器,即后验 H_{∞} 滤波器的最优 H_{∞} 性能指标小于先验 H_{∞} 滤波器 的最优性能指标^[12]。其中一个原因应当是后验 H_∞ 滤波器利用了 更多的信息,即系统当前的量测信息。

3.2 最优 H_∞ 范数与 Hamilton 差 分系统特征值

定义如下形式的目标函数[3]

$$J_{\gamma}(\hat{z}, \boldsymbol{w}, \boldsymbol{v}, \boldsymbol{x}_{0}) = \frac{1}{2} \sum_{k=0}^{N-1} \left[\gamma^{-2} (\boldsymbol{z}_{k} - \hat{\boldsymbol{z}}_{k})^{\mathrm{T}} (\boldsymbol{z}_{k} - \hat{\boldsymbol{z}}_{k}) - (\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{w}_{k} + \boldsymbol{v}_{k}^{\mathrm{T}} \boldsymbol{v}_{k}) \right] - \frac{1}{2} (\boldsymbol{x}_{0} - \hat{\boldsymbol{x}}_{0})^{\mathrm{T}} \boldsymbol{Q}_{0}^{-1} (\boldsymbol{x}_{0} - \hat{\boldsymbol{x}}_{0})$$
(3. 2. 1)

利用 Lagrange 乘子 λ_k 可以将约束(3.1.1) 引入目标函数,并 考虑到式(3.1.2) 和(3.1.3),得到增广的性能指标泛函

$$J_{\gamma}(\hat{\boldsymbol{z}}, \boldsymbol{w}, \boldsymbol{v}, \boldsymbol{x}_{0})$$

$$= \sum_{k=0}^{N-1} \left[\boldsymbol{\lambda}_{k+1}^{\mathrm{T}}(\boldsymbol{x}_{k+1} - \boldsymbol{A}_{k}\boldsymbol{x}_{k} - \boldsymbol{D}_{k}\boldsymbol{w}_{k}) + \frac{1}{2} \boldsymbol{\gamma}^{-2} (\boldsymbol{x}_{k} - \hat{\boldsymbol{x}}_{k})^{\mathrm{T}} \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k} (\boldsymbol{x}_{k} - \hat{\boldsymbol{x}}_{k}) - \frac{1}{2} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{w}_{k} - \frac{1}{2} (\boldsymbol{y}_{k} - \boldsymbol{C}_{k} \boldsymbol{x}_{k})^{\mathrm{T}} (\boldsymbol{y}_{k} - \boldsymbol{C}_{k} \boldsymbol{x}_{k}) \right] - \frac{1}{2} (\boldsymbol{x}_{0} - \hat{\boldsymbol{x}}_{0})^{\mathrm{T}} \boldsymbol{Q}_{0}^{-1} (\boldsymbol{x}_{0} - \hat{\boldsymbol{x}}_{0}) \qquad (3.2.2)$$

由这一性能指标泛函驻值的必要条件可得两端边值问题

 $\boldsymbol{x}_{k+1} = \boldsymbol{A}_k \boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{D}_k^{\mathrm{T}} \boldsymbol{\lambda}_{k+1}$ (3. 2. 3a)

 $\boldsymbol{\lambda}_{k} = (\boldsymbol{\gamma}^{-2}\boldsymbol{H}_{k}^{\mathrm{T}}\boldsymbol{H}_{k} - \boldsymbol{C}_{k}^{\mathrm{T}}\boldsymbol{C}_{k})\boldsymbol{x}_{k} + \boldsymbol{A}_{k}^{\mathrm{T}}\boldsymbol{\lambda}_{k+1} + \boldsymbol{C}_{k}^{\mathrm{T}}\boldsymbol{y}_{k} - \boldsymbol{\gamma}^{-2}\boldsymbol{H}_{k}^{\mathrm{T}}\boldsymbol{H}_{k}\boldsymbol{\hat{x}}_{k}$ (3. 2. 3b)

边界条件为

$$\boldsymbol{x}_{\scriptscriptstyle 0} = \hat{\boldsymbol{x}}_{\scriptscriptstyle 0} + \boldsymbol{Q}_{\scriptscriptstyle 0} \boldsymbol{\lambda}_{\scriptscriptstyle 0}, \boldsymbol{\lambda}_{\scriptscriptstyle N} = \boldsymbol{0}$$
 (3. 2. 3c)

实际上离散 Riccati 方程(3.1.6) 的解由式(3.2.3) 的齐次方程就

可以确定,即

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}_k \boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{D}_k^{\mathrm{T}} \boldsymbol{\lambda}_{k+1} \qquad (3. 2. 4a)$$

$$\boldsymbol{\lambda}_{k} = (\boldsymbol{\gamma}^{-2} \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k} - \boldsymbol{C}_{k}^{\mathrm{T}} \boldsymbol{C}_{k}) \boldsymbol{x}_{k} + \boldsymbol{A}_{k}^{\mathrm{T}} \boldsymbol{\lambda}_{k+1} \qquad (3. 2. 4 \mathrm{b})$$

边界条件为

 $\boldsymbol{x}_0 = \boldsymbol{Q}_0 \boldsymbol{\lambda}_0, \quad \boldsymbol{\lambda}_N = \boldsymbol{0}$ (3.2.4c)

边值问题(3.2.4)存在非平凡解时,相应的 γ^{-2} 是其特征值。 由于式(3.2.4)属于 Hamilton 差分方程,为了讨论问题方便,虽然 上一章中已经有一些介绍,这里仍给出这类方程特征值问题的有 关结论。考虑一般形式的离散 Hamilton 差分系统特征值问题

 $\Delta \boldsymbol{x}_{k} = \widetilde{\boldsymbol{A}}_{k} \boldsymbol{x}_{k} + \widetilde{\boldsymbol{D}}_{k} \widetilde{\boldsymbol{D}}_{k}^{\mathrm{T}} \boldsymbol{\lambda}_{k+1} \qquad (3. 2. 5a)$ $\Delta \boldsymbol{\lambda}_{k} = (\widetilde{\boldsymbol{C}}_{k}^{\mathrm{T}} \widetilde{\boldsymbol{C}}_{k} - \gamma^{-2} \widetilde{\boldsymbol{H}}_{k}^{\mathrm{T}} \widetilde{\boldsymbol{H}}_{k}) \boldsymbol{x}_{k} - \widetilde{\boldsymbol{A}}_{k}^{\mathrm{T}} \boldsymbol{\lambda}_{k+1} \qquad (3. 2. 5b)$

其中差分算子 Δ 的定义为 $\Delta x_k = x_{k+1} - x_k$, 且 $k \in [0, N-1]$ 。其边界条件为

$$\boldsymbol{R}^* \begin{bmatrix} -\boldsymbol{x}_0 \\ \boldsymbol{x}_{N+1} \end{bmatrix} + \boldsymbol{R} \begin{bmatrix} \boldsymbol{\lambda}_0 \\ \boldsymbol{\lambda}_{N+1} \end{bmatrix} = \boldsymbol{0} \qquad (3. 2. 5c)$$

方程(3.2.5a)及(3.2.5b)的矩阵形式为

 $\Delta \boldsymbol{X}_{k} = \widetilde{\boldsymbol{A}}_{k} \boldsymbol{X}_{k} + \widetilde{\boldsymbol{D}}_{k} \widetilde{\boldsymbol{D}}_{k}^{\mathrm{T}} \boldsymbol{\Lambda}_{k+1}$ (3. 2. 6a)

 $\Delta \boldsymbol{\Lambda}_{k} = (\widetilde{\boldsymbol{C}}_{k}^{\mathrm{T}} \widetilde{\boldsymbol{C}}_{k} - \gamma^{-2} \widetilde{\boldsymbol{H}}_{k}^{\mathrm{T}} \widetilde{\boldsymbol{H}}_{k}) \boldsymbol{X}_{k} - \widetilde{\boldsymbol{A}}_{k}^{\mathrm{T}} \boldsymbol{\Lambda}_{k+1} \qquad (3. 2. 6 \mathrm{b})$

如果对于所有的 $k \in [0, N-1]$, Hamilton 差分方程(3.2.6) 的解矩阵 X_k, Λ_k 满足 rank $(X_k^T \Lambda_k^T) = n \mathcal{D} X_k^T \Lambda_k = \Lambda_k^T X_k, \mathfrak{m}(X, \Lambda)$ 称为 Hamilton 差分方程的一个联合基^[7~8]。

定理 3.1^[7] 若差分方程的边界条件为可分离形式

$$\boldsymbol{R}^* = \begin{bmatrix} -\boldsymbol{R}_0^* & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R}_N^* \end{bmatrix}$$
(3. 2. 7a)

$$\boldsymbol{R} = \begin{bmatrix} \boldsymbol{R}_0 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R}_N \end{bmatrix}$$
(3. 2. 7b)

并设(X, Λ)为式(3.2.6)的联合基, 且 $X_0 = - R_0^T$, $\Lambda_0 = R_0^{*T}$, 则

 γ^{-2} 为式(3.2.6)及(3.2.7)的特征值当且仅当 $R_N^* X_N + R_N \Lambda_N$ 为 奇异矩阵。

为建立 Riccati 方程与 Hamilton 差分方程的联系,令 $A_k = I + \widetilde{A}_k$, $D_k = \widetilde{D}_k$, $H_k = \widetilde{H}_k$, $C_k = \widetilde{C}_k$,则可将方程(3.2.7) 变换为(3.2.4) 的形式,两者等价。而由 Hamilton 差分方程(3.2.6) 的联合基即可 构造 Riccati 方程的解。令 $Q_k = X_k \Lambda_k^{-1}$,可将(3.2.6a) 及(3.2.6b) 变换为

$$\boldsymbol{Q}_{k+1} = \boldsymbol{A}_{k} \boldsymbol{Q}_{k} \boldsymbol{\Lambda}_{k} \boldsymbol{\Lambda}_{k+1}^{-1} + \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}}$$
(3. 2. 8a)

$$\boldsymbol{I} + (\boldsymbol{C}_{k}^{\mathrm{T}}\boldsymbol{C}_{k} - \boldsymbol{\gamma}^{-2}\boldsymbol{H}_{k}^{\mathrm{T}}\boldsymbol{H}_{k})\boldsymbol{Q}_{k} = \boldsymbol{A}_{k}\boldsymbol{\Lambda}_{k+1}\boldsymbol{\Lambda}_{k}^{-1} \quad (3.2.8\mathrm{b})$$

从而有

$$\boldsymbol{Q}_{k+1} = \boldsymbol{A}_{k}\boldsymbol{Q}_{k} [\boldsymbol{I} + (\boldsymbol{C}_{k}^{\mathrm{T}}\boldsymbol{C}_{k} - \boldsymbol{\gamma}^{-2}\boldsymbol{H}_{k}^{\mathrm{T}}\boldsymbol{H}_{k})\boldsymbol{Q}_{k}]^{-1}\boldsymbol{A}_{k}^{\mathrm{T}} + \boldsymbol{D}_{k}\boldsymbol{D}_{k}^{\mathrm{T}}$$

(3.2.9)

显然此方程就是 Riccati 方程(3.1.6)。若令

$$\boldsymbol{R}^* = \begin{bmatrix} -\boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}$$
(3.2.10a)

$$\boldsymbol{R} = \begin{bmatrix} -\boldsymbol{Q}_0 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{I} \end{bmatrix}$$
(3. 2. 10b)

则对于 $(X,\Lambda), X = Q_0, \Lambda_0 = I, 从而 Q_0 = X_0 \Lambda_0^{-1}$ 。又因为 $R_N^* = 0$, $R_N = I, 所以 R_N^* X_N + R_N \Lambda_N = \Lambda_N$ 。显然当 γ^{-2} 为离散 Hamilton 系统的特征值时,必定有 Λ_N 奇异,从而 Riccati 方程(3.1.6) 在此点 无定义。从 H_∞ 滤波的角度来看,则表明当 γ^{-2} 等于一阶特征值 r_1^{-2} 时,次优 H_∞ 滤波器不存在,此时的 γ 就是 H_∞ 滤波系统的最优性 能指标。至此已经建立了最优 H_∞ 范数与离散 Hamilton 系统一阶 特征值之间的关系。

另外,Hamilton 差分方程(3.2.3) 还是下列离散变分驻值问题的必要条件

$$J = \sum_{k=0}^{K-1} \left(\boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{x}_{k+1} - \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{A}_{k} \boldsymbol{x}_{k} + \frac{1}{2} \boldsymbol{x}_{k}^{\mathrm{T}} (\boldsymbol{C}_{k}^{\mathrm{T}} \boldsymbol{C}_{k} - \boldsymbol{\gamma}^{-2} \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k}) \boldsymbol{x}_{k} - \frac{1}{2} \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{D}_{k} \boldsymbol{\lambda}_{k+1} \right) + \frac{1}{2} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{Q}_{0}^{-1} \boldsymbol{x}_{0}$$

$$(3. 2. 11)$$

$$\delta \boldsymbol{L} = 0$$

因此当 x_k , λ_k 的选取使得 $\delta J = 0$ 时,有

$$\gamma^{-2} = \operatorname{st} \frac{\Pi_1}{\Pi_2}$$
 (3. 2. 12)

$$\boldsymbol{\Pi}_{1} = \sum_{k=0}^{N-1} \left(\boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{x}_{k+1} - \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{A}_{k} \boldsymbol{x}_{k} + \frac{1}{2} \boldsymbol{x}_{k}^{\mathrm{T}} \boldsymbol{C}_{k}^{\mathrm{T}} \boldsymbol{C}_{k} \boldsymbol{x}_{k} - \frac{1}{2} \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{D}_{k} \boldsymbol{\lambda}_{k+1} \right) + \frac{1}{2} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{Q}_{0}^{-1} \boldsymbol{x}_{0} \qquad (3. 2. 13a)$$

$$\boldsymbol{\Pi}_{2} = \frac{1}{2} \sum_{k=0}^{N-1} \boldsymbol{x}_{k}^{\mathrm{T}} \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k} \boldsymbol{x}_{k} \qquad (3.2.13\mathrm{b})$$

式(3.2.12)具有两类变量广义 Rayleigh 商驻值的形式。下一节将 通过离散 Legendre 变换将一般的矩阵广义特征值问题(一类变量 Rayleigh 商驻值问题) 变换成两类变量广义 Rayleigh 商驻值的形 式,这是应用扩展 Wittrick-Williams 算法计算最优 H_{∞} 范数的前 提。

3.3 矩阵特征值及广义 Rayleigh 商

考虑下列广义矩阵特征值问题

$$(K - \rho M)d = 0 (3.3.1)$$

其中对称矩阵 $K \ge 0, M > 0$,向量 $d \in \mathbb{R}^{Nn+n}$,并分别具有下列形 式

$$K = \begin{bmatrix} \mathbf{K}_{aa0} + \mathbf{S}_{0}^{-1} & \mathbf{K}_{ab0} \\ & \mathbf{K}_{bb0} + \mathbf{K}_{aa1} \\ & & \ddots & \mathbf{K}_{abN} \\ & & & symmetry & \mathbf{K}_{bbN} \end{bmatrix}$$
(3. 3. 2a)

$$\boldsymbol{M} = \begin{bmatrix} \boldsymbol{M}_{0} & & \\ & \boldsymbol{M}_{1} & \\ & \ddots & \\ & & \boldsymbol{M}_{N} \end{bmatrix}$$
(3. 3. 2b)
$$\boldsymbol{d} = \begin{bmatrix} \boldsymbol{d}_{0}^{\mathrm{T}}, \boldsymbol{d}_{1}^{\mathrm{T}}, \cdots, \boldsymbol{d}_{N}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$$
(3. 3. 2c)

其中 K_{aai}, K_{bbi} 为对称阵, $K_{abi}^{T} = K_{bai}, K_{aai}, K_{bbi}, K_{abi} \in \mathbb{R}^{n \times n}, d_i \in \mathbb{R}^n (i = 0, 1, \dots, N-1)$ 。众所周知,广义特征值问题(3.3.1)的特征值 是下列 Rayleigh 商的驻值

$$\rho = \operatorname{st} \frac{d^{\mathrm{T}} K d}{d^{\mathrm{T}} M d} \tag{3.3.3}$$

即

$$\rho = \operatorname{st} \frac{\sum_{k=0}^{N-1} U_k^0(\boldsymbol{d}_k, \boldsymbol{d}_{k+1}) + \frac{1}{2} \boldsymbol{d}_0^{\mathrm{T}} \boldsymbol{S}_0^{-1} \boldsymbol{d}_0}{\frac{1}{2} \sum_{k=0}^{N-1} \boldsymbol{d}_k^{\mathrm{T}} \boldsymbol{M}_k \boldsymbol{d}_k}$$
(3.3.4)

其中

$$U_k^0(\boldsymbol{d}_k, \boldsymbol{d}_{k+1}) = \frac{1}{2} \boldsymbol{d}_k^{\mathrm{T}} \boldsymbol{K}_{aak} \boldsymbol{d}_k + \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{K}_{bak} \boldsymbol{d}_k + \frac{1}{2} \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{K}_{bbk} \boldsymbol{d}_{k+1}$$
(3. 3. 5)

因为特征值问题(3.3.1)等价于变分问题

$$\delta \left[\frac{1}{2} \boldsymbol{d}^{\mathrm{T}} (\boldsymbol{K} - \rho \boldsymbol{M}) \boldsymbol{d} \right] = 0 \qquad (3.3.6)$$

即

$$\delta \left[\sum_{k=0}^{N-1} U_{k}^{0}(\boldsymbol{d}_{k}, \boldsymbol{d}_{k+1}) + \frac{1}{2} \boldsymbol{d}_{0}^{\mathrm{T}} \boldsymbol{S}_{0}^{-1} \boldsymbol{d}_{0} - \frac{1}{2} \sum_{k=0}^{N-1} \rho \boldsymbol{d}_{k}^{\mathrm{T}} \boldsymbol{M}_{k} \boldsymbol{d}_{k} \right] = 0$$
(3. 3. 7)

现在令

$$U_k(\boldsymbol{d}_k, \boldsymbol{d}_{k+1}) = U_k^0(\boldsymbol{d}_k, \boldsymbol{d}_{k+1}) - \frac{1}{2}\rho \boldsymbol{d}_k^{\mathrm{T}} \boldsymbol{M}_k \boldsymbol{d}_k \qquad (3.3.8)$$

通过下列离散 Legendre 变换,变分问题(3.3.7) 可以变换为等价 的正则形式。定义

$$\boldsymbol{n}_{k} = -\frac{\partial U_{k}}{\partial \boldsymbol{d}_{k}} = -\boldsymbol{K}_{aak}\boldsymbol{d}_{k} + \rho \boldsymbol{M}_{k}\boldsymbol{d}_{k} - \boldsymbol{K}_{abk}\boldsymbol{d}_{k+1} \quad (3. \ 3. \ 9a)$$

$$\boldsymbol{n}_{k+1} = \frac{\partial U_k}{\partial \boldsymbol{d}_{k+1}} = \boldsymbol{K}_{aak} \boldsymbol{d}_k + \boldsymbol{K}_{bbk} \boldsymbol{d}_{k+1} \qquad (3.3.9b)$$

则 U_k 可以表示为

$$U_k(\boldsymbol{d}_k, \boldsymbol{d}_{k+1}) = -\frac{1}{2}\boldsymbol{n}_k^{\mathrm{T}}\boldsymbol{d}_k + \frac{1}{2}\boldsymbol{n}_{k+1}^{\mathrm{T}}\boldsymbol{d}_{k+1} \qquad (3. 3. 10)$$

솏

$$H_{k}(\boldsymbol{n}_{k}, \boldsymbol{d}_{k+1}) = \boldsymbol{d}_{k+1}^{\mathrm{T}} \boldsymbol{n}_{k+1} - U_{k}(\boldsymbol{d}_{k}, \boldsymbol{d}_{k+1}) \qquad (3. 3. 11)$$

由(3.3.9)求解 n_{k+1} 和 d_k ,可得下列对偶方程

$$d_{k+1} = F_k d_k + G_k n_{k+1}$$
 (3.3.12a)

$$\boldsymbol{n}_{k} = -\boldsymbol{E}_{k}\boldsymbol{d}_{k} + \boldsymbol{F}_{k}^{\mathrm{T}}\boldsymbol{n}_{k+1} \qquad (3. 3. 12 \mathrm{b})$$

其中

$$\boldsymbol{F}_{k} = -\boldsymbol{K}_{bbk}^{-1}\boldsymbol{K}_{bak} \tag{3.3.13a}$$

$$\boldsymbol{G}_k = \boldsymbol{K}_{bbk}^{-1} \tag{3. 3. 13b}$$

 $E_k = K_{aak} - K_{abk}K_{bbk}^{-1}K_{bak} - \rho M_k = E_k^0 - \rho M_k$ (3.3.13c) 这些矩阵称为区段矩阵。而 Hamilton 函数 $H_k(n_k, d_{k+1})$ 可表示为

$$H_k(\boldsymbol{n}_k, \boldsymbol{d}_{k+1}) = -\frac{1}{2}\boldsymbol{d}_k^{\mathrm{T}}\boldsymbol{E}_k\boldsymbol{d}_k + \boldsymbol{n}_{k+1}^{\mathrm{T}}\boldsymbol{F}_k\boldsymbol{d}_k + \frac{1}{2}\boldsymbol{n}_{k+1}^{\mathrm{T}}\boldsymbol{G}_k\boldsymbol{n}_{k+1}$$
(3. 3. 14)

从而得到与变分问题(3.3.7)等价的两类变量变分问题

$$\delta \left[\sum_{k=0}^{N-1} (\boldsymbol{n}_{k+1}^{\mathrm{T}} \boldsymbol{d}_{k+1} - \left(\boldsymbol{n}_{k+1}^{\mathrm{T}} \boldsymbol{F}_{k} \boldsymbol{d}_{k} - \frac{1}{2} \boldsymbol{d}_{k}^{\mathrm{T}} \boldsymbol{E}_{k} \boldsymbol{d}_{k} + \frac{1}{2} \boldsymbol{n}_{k+1}^{\mathrm{T}} \boldsymbol{G}_{k} \boldsymbol{n}_{k+1} \right) + \frac{1}{2} \boldsymbol{d}_{0}^{\mathrm{T}} \boldsymbol{S}_{0}^{-1} \boldsymbol{d}_{0} \right] = 0 \qquad (3. 3. 15)$$

根据上述结果,Rayleigh 商(3.3.4)可以变换为等价的两类变量 广义 Rayleigh 商的形式

$$\rho = \operatorname{st} \frac{\Phi_1}{\Phi_2} \tag{3.3.16}$$

其中

$$\Phi_{1} = \sum_{k=0}^{N-1} \left(\boldsymbol{n}_{k+1}^{\mathsf{T}} \boldsymbol{d}_{k+1} - \boldsymbol{n}_{k+1}^{\mathsf{T}} \boldsymbol{F}_{k} \boldsymbol{d}_{k} + \frac{1}{2} \boldsymbol{d}_{k}^{\mathsf{T}} \boldsymbol{E}_{k}^{0} \boldsymbol{d}_{k} + \frac{1}{2} \boldsymbol{n}_{k+1}^{\mathsf{T}} \boldsymbol{G}_{k} \boldsymbol{n}_{k+1} \right) + \frac{1}{2} \boldsymbol{d}_{0}^{\mathsf{T}} \boldsymbol{Q}_{0}^{-1} \boldsymbol{d}_{0}$$
(3. 3. 17a)

$$\boldsymbol{\Phi}_{2} = \frac{1}{2} \sum_{k=0}^{N-1} \boldsymbol{d}_{k}^{\mathrm{T}} \boldsymbol{M}_{k} \boldsymbol{d}_{k} \qquad (3. 3. 17 \mathrm{b})$$

比较式(3.3.16)及(3.2.12)可知其形式与意义完全一致,所以计 算广义 Rayleigh 商驻值的算法也可以用来计算最优 H_{∞} 范数。因 为 $d \in \mathbf{R}^{Nn+n}$,一般来讲特征值问题(3.3.1)的维数会非常大,但这 里仅需要计算一阶特征值,所以应当选择适合于这类问题的算法。 这里采用扩展 Wittrick-Williams 算法结合 2^{N} 类型的区段合并公 式^[9] 解决这一问题。合并公式是通过定义

$$\boldsymbol{d}_{k} = \boldsymbol{F}_{1}\boldsymbol{d}_{k-1} + \boldsymbol{G}_{1}\boldsymbol{n}_{k} \qquad (3. \ 3. \ 18a)$$

$$\boldsymbol{n}_{k-1} = -\boldsymbol{E}_1 \boldsymbol{d}_{k-1} + \boldsymbol{F}_1^{\mathrm{T}} \boldsymbol{n}_k \qquad (3.3.18\mathrm{b})$$

$$\boldsymbol{d}_{k+1} = \boldsymbol{F}_2 \boldsymbol{d}_k + \boldsymbol{G}_1 \boldsymbol{n}_{k+1}$$
 (3. 3. 19a)

$$\boldsymbol{n}_{k} = -\boldsymbol{E}_{1}\boldsymbol{d}_{k} + \boldsymbol{F}_{1}^{\mathrm{T}}\boldsymbol{n}_{k+1} \qquad (3.3.19\mathrm{b})$$

$$\boldsymbol{d}_{k+1} = \boldsymbol{F}_{c} \boldsymbol{d}_{k-1} + \boldsymbol{G}_{c} \boldsymbol{n}_{k+1}$$
 (3. 3. 20a)

$$\boldsymbol{n}_{k-1} = -\boldsymbol{E}_{c}\boldsymbol{d}_{k-1} + \boldsymbol{F}_{c}^{\mathrm{T}}\boldsymbol{n}_{k+1} \qquad (3. 3. 20\mathrm{b})$$

而导出的公式

$$G_{c} = G_{2} + F_{2}(G_{1}^{-1} + E_{2})^{-1}F_{2}^{T}$$
 (3. 3. 21a)

$$E_{c} = E_{1} + F_{1}^{T} (E_{2}^{-1} + G_{1})^{-1} F_{1}$$
 (3. 3. 21b)

 $F_{c} = F_{2}(I + G_{1}E_{2})^{-1}F_{1}$ (3. 3. 21c)

很明显,这种差分方程系数之间的关系不仅只对式($3.3.18 \sim 3.3.21$)的情况成立,任意两个相邻区间1和2合并构成一个新区间c时,对应的差分方程系数都有这一关系^[9]。

3.4 最优 H_∞ 范数计算

3.4.1 扩展 Wittrick-Williams 特征值计数公式

第二章中已经给出了 Wittrick-Williams 特征值计数公式,为 方便讨论与阅读,这里再简要复述一下。对于广义特征值问题

 $(K - \rho M)x = 0$ (3.4.1) 其中 $K > 0, K^{T} = K, M > 0, M^{T} = M, x \in \mathbb{R}^{n}, \exists \{A\}$ 表示对称矩 阵 A 的负特征值个数,定义广义特征值问题(3.4.1)小于给定值 ρ_{\pm} 的特征值个数为其特征值计数, $\exists J(\rho_{\pm})$ 表示,则有

$$J(\rho_{\#}) = s\{\boldsymbol{K} - \rho_{\#}\boldsymbol{M}\}$$
(3.4.2)

如果将矩阵及向量分块表示为下列形式

$$\left\{ \begin{bmatrix} \boldsymbol{K}_{aa} & \boldsymbol{K}_{ab} \\ \boldsymbol{K}_{ba} & \boldsymbol{K}_{bb} \end{bmatrix} - \rho \begin{bmatrix} \boldsymbol{M}_{aa} & \boldsymbol{M}_{ab} \\ \boldsymbol{M}_{ba} & \boldsymbol{M}_{bb} \end{bmatrix} \right\} \begin{bmatrix} \boldsymbol{x}_{a} \\ \boldsymbol{x}_{b} \end{bmatrix} = \boldsymbol{0} \qquad (3.4.3)$$

其中 $x_a \in \mathbf{R}^r, x_b \in \mathbf{R}^{n-r}$ 。设 $x_a = 0$,则有

$$(\boldsymbol{K}_{bb} - \rho \boldsymbol{M}_{bb})\boldsymbol{x}_{b} = \boldsymbol{0}$$
(3.4.4)

ic(3, 4, 4) 式小于 $\rho_{\#}$ 的特征值计数为 $J_{0}(\rho_{\#})$,并记

$$D(\rho_{\pm}) = \mathbf{K}_{aa} - \rho_{\pm} \mathbf{M}_{aa} - (\mathbf{K}_{ab} - \rho_{\pm} \mathbf{M}_{ab}) (\mathbf{K}_{bb} - \rho_{\pm} \mathbf{M}_{bb})^{-1} \cdot (\mathbf{K}_{ba} - \rho_{\pm} \mathbf{M}_{ba})$$
(3.4.5)

则有

$$J(\rho_{\#}) = J_0(\rho_{\#}) + s\{\boldsymbol{D}(\rho_{\#})\}$$
(3.4.6)

当 $n \rightarrow \infty$, **D**(ρ) 是 ρ 的超越函数时上述等式依然成立。

下面介绍扩展 Wittrick-Williams 特征值计数公式及其证明, 这里的公式是适用于 H_∞ 滤波问题的形式,与第二章中介绍的内 容有所区别。

A:无约束情况

对于特征值问题
$$\begin{bmatrix} \boldsymbol{K}_{aa1} & \boldsymbol{K}_{ab1} \\ \boldsymbol{K}_{ba1} & \boldsymbol{K}_{bb1} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{k-1} \\ \boldsymbol{x}_{k} \end{bmatrix} = \boldsymbol{0}$$
(3. 4. 7)

若 $x_{k-1} = 0, x_k \neq 0$,则有

$$\boldsymbol{K}_{bb1}\boldsymbol{x}_k = \boldsymbol{0} \tag{3.4.8}$$

其特征值计数为

$$J_{R_1}(\rho_{\#}) = s\{\boldsymbol{K}_{bb_1}\} = s\{\boldsymbol{G}_1\}$$
(3.4.9)

由 Wittrick-Williams 特征值计数定理,并利用式(3.3.14) 可得问 题(3.4.7) 的特征值计数

$$J_1(\rho_{\#}) = J_{R1}(\rho_{\#}) + s\{E_1\}$$
(3.4.10)

对于特征值问题

$$\begin{bmatrix} \boldsymbol{K}_{aa2} & \boldsymbol{K}_{ab2} \\ \boldsymbol{K}_{ba2} & \boldsymbol{K}_{bb2} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_k \\ \boldsymbol{x}_{k+1} \end{bmatrix} = \boldsymbol{0}$$
(3. 4. 11)

同理可得

$$J_{R_2}(\rho_{\#}) = s\{\boldsymbol{K}_{bb_2}\} = s\{\boldsymbol{G}_2\}$$
(3. 4. 12)

$$J_{2}(\rho_{\#}) = J_{R_{2}}(\rho_{\#}) + s\{\boldsymbol{E}_{2}\}$$
(3.4.13)

而对于特征值问题

$$\begin{bmatrix} \mathbf{K}_{aa1} & \mathbf{K}_{ab1} \\ \mathbf{K}_{ba1} & \mathbf{K}_{aa2} + \mathbf{K}_{bb1} & \mathbf{K}_{ab2} \\ \mathbf{K}_{ba2} & \mathbf{K}_{bb2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k-1} \\ \mathbf{x}_{k} \\ \mathbf{x}_{k+1} \end{bmatrix}$$
(3.4.14)

设 $x_{k-1} = 0, x_k, x_{k+1} \neq 0$,则有特征值问题

$$\begin{bmatrix} \mathbf{K}_{bb1} + \mathbf{K}_{aa2} & \mathbf{K}_{ab2} \\ \mathbf{K}_{ba2} & \mathbf{K}_{bb2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ \mathbf{x}_{k+1} \end{bmatrix}$$
(3. 4. 15)

对其进行 Schur 分解

$$\begin{bmatrix} \mathbf{K}_{bb1} + \mathbf{K}_{aa2} & \mathbf{K}_{ab2} \\ \mathbf{K}_{ba2} & \mathbf{K}_{bb2} \end{bmatrix} = \begin{bmatrix} \mathbf{K}_{bb1} + \mathbf{K}_{bb2} - \mathbf{K}_{ab2} \mathbf{K}_{bb2}^{-1} \mathbf{K}_{ba2} & \mathbf{K}_{ab2} \\ \mathbf{K}_{bb2} \end{bmatrix} \times \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{K}_{bb2}^{-1} \mathbf{K}_{ab2} & \mathbf{I} \end{bmatrix}$$
(3. 4. 16)

则特征值问题(3.4.15)的特征值计数可表示为

 $J_{R_{c}}(\rho_{\#}) = J_{R_{1}}(\rho_{\#}) + J_{R_{2}}(\rho_{\#}) - s\{G_{1}\} + s\{G_{1}^{-1} + E_{2}\}$ (3. 4. 17)

B:有约束情况

考虑特征值问题

$$\begin{bmatrix} \boldsymbol{K}_{aa1} & \boldsymbol{K}_{ab1} \\ \boldsymbol{K}_{ba1} & \boldsymbol{K}_{bb1} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{k-1} \\ \boldsymbol{x}_{k} \end{bmatrix} = \boldsymbol{0}$$
(3. 4. 18)

在约束 $x_{k-1} = S_0 \lambda_{l-1}, \lambda_k = 0$ 情况下的特征值计数。利用

 $\lambda_{k-1} = -K_{aa1}x_{k-1} - K_{ab1}x_{k}$ (3.4.19) 将其转化为无约束特征值问题。

$$\begin{bmatrix} \mathbf{S}_0^{-1} + \mathbf{K}_{aa1} & \mathbf{K}_{ab1} \\ \mathbf{K}_{ba1} & \mathbf{K}_{bb1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k-1} \\ \mathbf{x}_k \end{bmatrix} = \mathbf{0}$$
(3. 4. 20)

注意其中 $\lambda_k = 0$ 的条件是自然满足的。进行Schur 分解后可得到 其特征值计数公式

$$J_{RG_1}(\rho_{\#}) = J_{R_1}(\rho_{\#}) + s\{\mathbf{S}_0^{-1} + \mathbf{E}_1\}$$
(3.4.21)

再考虑特征值问题

$$\begin{bmatrix} \mathbf{S}_{0}^{-1} + \mathbf{K}_{aa1} & \mathbf{K}_{ab1} \\ \mathbf{K}_{ba1} & \mathbf{K}_{aa2} + \mathbf{K}_{bb1} & \mathbf{K}_{ab2} \\ \mathbf{K}_{ba2} & \mathbf{K}_{bb2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k-1} \\ \mathbf{x}_{k} \\ \mathbf{x}_{k+1} \end{bmatrix}$$
(3. 4. 22)

设 $x_{k-1} = 0$,则有特征值问题

$$\begin{bmatrix} \mathbf{K}_{bb1} + \mathbf{K}_{aa2} & \mathbf{K}_{ab2} \\ \mathbf{K}_{ba2} & \mathbf{K}_{bb2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ \mathbf{x}_{k+1} \end{bmatrix} = \mathbf{0}$$
(3. 4. 23)

记其特征值计数为 $J_0(\rho_{\#})$, 显然有

$$J_0(\rho_{\#}) = J_{Rc}(\rho_{\#}) \tag{3.4.24}$$

按照式(3.4.5),有

$$\boldsymbol{D}(\rho_{\#}) = (\boldsymbol{S}_{0}^{-1} + \boldsymbol{K}_{aa1}) - [\boldsymbol{K}_{ab1} \, \boldsymbol{0}] \begin{bmatrix} \boldsymbol{K}_{bb1} + \boldsymbol{K}_{aa2} & \boldsymbol{K}_{ab2} \\ \boldsymbol{K}_{ba2} & \boldsymbol{K}_{bb2} \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{K}_{ba1} \\ \boldsymbol{0} \end{bmatrix}$$
(3. 4. 25)

由分块矩阵求逆定理得

 $\boldsymbol{D}(\rho_{\#}) = \boldsymbol{S}_{0}^{-1} + \boldsymbol{E}_{1} + \boldsymbol{F}_{1}^{\mathrm{T}} [\boldsymbol{G}_{1}^{-1} - (\boldsymbol{I} + \boldsymbol{E}_{2} \boldsymbol{G}_{1})^{-1} \boldsymbol{G}_{1}^{-1}] \boldsymbol{F}_{1}$

(3.4.26)

根据式(3.3.21)可进一步将其变换为

$$\boldsymbol{D}(\rho_{\#}) = \mathbf{S}_{0}^{-1} + \boldsymbol{E}_{c} \qquad (3. 4. 27)$$

从而特征值问题(3.4.22)的特征值计数为

 $J_{RG_c}(\rho_{\#}) = J_{R_c}(\rho_{\#}) + s\{\mathbf{S}_0^{-1} + \mathbf{E}_c\}$ (3.4.28) 3.4.2 算法描述

综上所述,现将定常系统最优 H_{∞} 范数计算的步骤给出,时变 系统的算法是类似的,只不过需要给定系数矩阵 A_k, D_k, C_k, H_k 在 各时刻的值。

Step0. {选择合适的 $\gamma_{\#}^{-2}$; $E = C^{T}C - \gamma_{\#}^{-2}H^{T}H$; F = A; $G = DD^{T}$ }

Step 1. $\{E_2 = E; G_2 = G; F_2 = F; J_{R_2} = 0; E_1 = 0; G_1 = Q_0; F_1 = I; J_{R_1} = 0\}$

Step 2. for $(k = 1; k \leq K - 1; k + +)$ {

{由(3.3.22a ~ c), (3.4.28) 计算 E_c, G_c, F_c 和 J_{RGc} }

 $\{\boldsymbol{E}_1 = \boldsymbol{E}_c; \boldsymbol{G}_1 = \boldsymbol{G}_c; \boldsymbol{F}_1 = \boldsymbol{F}_c; \boldsymbol{J}_{R2} = \boldsymbol{J}_{RGc}\}$

if $(J_{Rc} > 0)$ { 中断循环; 选择较小的 $\gamma_{\#}^{-2}$ 重新开始 } }

Step3. if $(J_{RGc} > 0)$

 $\{\gamma_{\pm}^{-2} \neq \gamma_{opt}^{-2}$ 的一个上界(upperbound),在重新计算时应减小}

else

 $\{\gamma_{\#}^{-2}$ 为次优参数,是 γ_{opt}^{-2} 的一个下界(lowerbound)}

if (upperbound-lowerbound) > ε (ε 是预先选定的小

正实数)

{增加 γ_{\pm^2} 重新计算}

else

{break}

迭代可以在满足精度要求后终止,并取 lowerbound 作为 γ_{opt}^{-2} 。另外,上述算法中计算出的序列 G_k 就是 Riccati 方程(3.1.12) 的解矩阵 Σ_k ,这与连续系统的结果是一致的^[5]。对于给定的 $\gamma > \gamma_{opt}$,当 N 趋向于无穷时, Σ_N 趋近于 Riccati 代数方程(3.1.15) 的 解。

3.5 算例

算例 1:

第一个算例取自文献[3],参数如下

 $\boldsymbol{A} = \begin{bmatrix} 0.5079 & 0.7594 \\ -0.7594 & 0.2801 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} 0.4921 \\ 0.7504 \end{bmatrix}$ $\boldsymbol{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad \boldsymbol{H} = \begin{bmatrix} 1 & 0 \end{bmatrix}$

计算结果见表 $3-1_{\circ}$ 当 N 逐渐增大时,最优 H_{∞} 范数趋近于一个定值,这个值也是无限时间滤波问题的最优 H_{∞} 范数。

表 3-1

算例1的 γ_{opt}

Ν	2^{2}	2 ³	2^{4}	2^{5}
$\gamma_{ m opt}$	1.17627	1.18541	1.18609	1.19609
Ν	2^{6}	27	2 ⁸	2 ⁹
$\gamma_{ m opt}$	1.18609	1.18609	1.18609	1.18609

图 3.1 至图 3.4 则给出了 $\gamma^{-2} = \gamma_{opt}^{-2}$ 时,不同区间长度内 Riccati 方程解的变化情况。由图中可见 Riccati 方程解的增长趋势。

图 3.2 算例 1Riccati 方程的解 $(N = 10, \gamma^{-2} = \gamma_{opt}^{-2})$

图 3.3 算例 1Riccati 方程的解 $(N = 16, \gamma^{-2} = \gamma_{opt}^{-2})$

图 3.4 算例 1Riccati 方程的解 $(N = 32, \gamma^{-2} = \gamma_{opt}^{-2})$

图 3.5 至图 3.7 给出了 $\gamma^{-2} = 0.9 \times \gamma_{opt}^{-2}$ 时,不同区间长度内 Riccati 方程解的变化情况。

图 3.5 算例 1Riccati 方程的解 $(N = 16, \gamma^{-2} = 0.9 \times \gamma_{opt}^{-2})$

图 3.6 算例 1Riccati 方程的解 $(N = 32, \gamma^{-2} = 0.9 \times \gamma^{-2}_{opt})$

图 3.7 算例 1Riccati 方程的解(N = 64, γ⁻² = 0.9 × γ_{opf}) 图 3.8 至图 3.10 给出了 γ⁻² = 0.2 × γ⁻²_{opt} 时,不同区间长度 内 Riccati 方程解的变化情况。随着时间的增长,Riccati 方程的解 趋于常数值。

图 3.8 算例 1Riccati 方程的解 $(N = 16, \gamma^{-2} = 0.2 \times \gamma_{opt}^{-2})$

图 3.9 算例 1Riccati 方程的解 $(N = 32, \gamma^{-2} = 0.2 \times \gamma^{-2}_{opt})$

图 3.10 算例 1Riccati 方程的解 $(N = 64, \gamma^{-2} = 0.2 \times \gamma_{opt}^{-2})$

*H*矩阵是需估计向量的组合系数矩阵,当*H*矩阵变化时,系统的最优性能指标当然也会变化,表 3-2给出 $H = \begin{bmatrix} 3 & 0 \end{bmatrix}$ 时的计算结果。

表 3-2

H矩阵变化后算例 1 的 γ_{opt}

N	2^{2}	2^{3}	2^{4}	2^{5}
$\gamma_{ m opt}$	1.07669	3.55626	3.55827	3.55829
N	2 ⁶	27	2 ⁸	2 ⁹
$\gamma_{ m opt}$	3.55829	3.55829	3.55829	3.55829

算例 2:

第二个算例是将文献 5 中例 2 连续系统离散化后的系统,原 连续系统为

$$\dot{\mathbf{x}} = \begin{bmatrix} 0.0 & 1.0 \\ 39.4 & 3.8 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.0 \\ 1.0 \end{bmatrix} \mathbf{w}$$
$$\mathbf{y} = \begin{bmatrix} 1.0 & 0.0 \end{bmatrix} \mathbf{x} + \mathbf{v}$$
$$\mathbf{z} = \begin{bmatrix} 0.0 & 0.2 \end{bmatrix} \mathbf{x}$$

设输入端有零阶保持器,采样时间为 $\Delta T = 10/2^7 = 0.078125$,则 离散后的系统为

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1.136 & 0.095 \\ 3.729 & 1.495 \end{bmatrix} \mathbf{x}_{k} + \begin{bmatrix} 0.003 \\ 0.095 \end{bmatrix} \mathbf{w}_{k}$$
$$\mathbf{y}_{k} = \begin{bmatrix} 1.0 & 0.0 \end{bmatrix} \mathbf{x}_{k} + \mathbf{v}_{k}$$
$$\mathbf{z}_{k} = \begin{bmatrix} 0.0 & 0.2 \end{bmatrix} \mathbf{x}_{k}$$

取 $N = 2^7$ 计算,得 $\gamma_{opt} = 1.69185$ 。为进行比较,取同样长的时间 段,即对原连续系统取 T = 10 计算,得 $\gamma_{opt} = 1.69183$,可见两个结 果一致。而表 3-3 则是不同时间长度的最优范数值,采样间隔仍然 是 ΔT 。

表 3-3

算例 2 的 γ_{opt}

N	2^{2}	2 ³	2^{4}	2^{5}
$\gamma_{ m opt}$	1.29196	1.69184	1.69185	1.69185
N	2 ⁶	27	2 ⁸	2 ⁹
$\gamma_{ m opt}$	1.69185	1.69185	1.69185	1.69185

表 3-4 给出的是 $H = \begin{bmatrix} 0 & 1 \end{bmatrix}$ 时的计算结果。

表 3-4

Η 矩阵变化后算例 2 的 Υ₀₀₁

N	2^{2}	2^{3}	2^{4}	2^{5}
$\gamma_{ m opt}$	6.45976	8.45919	8.45020	9.45920
N	2^{6}	2^{7}	2 ⁸	2^{9}
$\gamma_{ m opt}$	8.45920	8.45920	8.45920	9.45920

算例 3

第三个算例同样也是将一个连续系统离散化后的系统,该连 续系统数据为

	-4.04	— 7 . 90	6.29	-20.33	-11.85	-37.20	— 9.837	
	3.84	-5.57	2.97	- 16.00	- 5.24	-12.06	4.87	
	0.0	0.0	6.36	- 4.69	3.61	-1.64	- 6.16	
A =	0.0	0.0	0.31	-1.20	- 0.03	— 2.35	- 0.97	
	0.0	0.0	0.0	0.0	- 0.42	-3.12	- 0.74	
	0.0	0.0	0.0	0.0	0.01	8.93	- 0.04	
	L0.0	0.0	0.0	0.0	0.0	2.0	- 4.87	
	- 7.0	94 — 7.	507 -	- 1.455 -	- 7.34	3.12 4	.04 —	3.1 T
D ⁻ -	- 3.7	88 2.1	01 -	- 1.835 -	- 9.60 -	1.418 —	1.98 —	4.2
$C = \begin{bmatrix} \\ \\ \end{bmatrix}$	5.320	9.13	2.422	1.67 -	- 5.541 -	- 6.43 —	7.63	
- L.	- 1.27	6.35 -	- 4.75	3.03 -	- 3.26 -	- 5.21 2.	.18	
L = (-	- 0.10	- 0.40	0.26	0.39 -	- 0.21 0.	45 - 0.6	57)	

采样间隔取 0.02,则离散后的系统为

	[1.0780	-0.1555	0.1332	— 0.3989	- 0.2324	-0.8145	- 0.2043
	0.0756	0.8888	0.0639	— 0.3168	- 0.1052	- 0.2677	0.0804
	0.0	0.0	1.1353	- 0.0989	0.0767	-0.0409	- 0.1249
A =	0.0	0.0	0.0065	0.9760	-0.0004	-0.0514	-0.0186
	0.0	0.0	0.0	0.0	0.9916	-0.0683	-0.0140
	0.0	0.0	0.0	0.0	0.0002	1.1955	-0.0008
	L 0.0	0.0	0.0	0.0	0.0	0.0418	0.9072

D T _	Γ-	- 0.1412	-0.1411	-0.0192	-0.1466	0.0599	0.0885	- 0.0574]	
D	L-	- 0.0182	0.0692	- 0.0249	- 0.1880	- 0.0263	- 0.0433	- 0.0809	
	-	^{5.320}	9.13 2.	422 1.67	-5.541	- 6.43 -	7.63		
C	, =	-1.27	6.35 —	4.75 3.03	-3.26	-5.21 2	2.18		

不同区间长度的最优 H_{∞} 范数计算结果见表 3-5。当 N 逐渐增大时,最优 H_{∞} 范数趋近于一个定值。

表 3-5

算例 3 的 $\gamma_{\rm out}$

Ν	2^{2}	2^{3}	2^{4}	2^{5}
$\gamma_{ m opt}$	0.177778	0.177778	1.12698	4.25877
N	2^{6}	27	2 ⁸	2 ⁹
$\gamma_{ m opt}$	4.25877	4.25877	4.25877	4.25877

表 3-6 给出的是将 H 矩阵中所有元素乘以 2 后的计算结果。

表 3-6

H矩阵变化后算例 3 的 γ_{opt}

Ν	2^{2}	2^{3}	2^{4}	2^{5}
$\gamma_{ m opt}$	0.116689	0.355555	2.25395	8.51752
N	2^{6}	2^{7}	2 ⁸	2 ⁹
$\gamma_{ m opt}$	8.51752	8.51752	8.51752	8.51752

本章建立了离散 H_{∞} 滤波系统的最优范数 γ_{opt} 与 Hamilton 差 分系统一阶特征值之间的关系。并在离散形式 Legendre 变换及广 义 Rayleigh 商的基础上指出了 γ_{opt}^{-2} 与矩阵广义特征值的对应关 系。最后介绍了 γ_{opt} 的计算方法。类似地,对于连续 H_{∞} 滤波系统, γ_{opt}^{-2} 则是 Hamilton 微分方程两端边值问题的一阶特征值,本书的 第五章将详细讨论这一问题。

参考文献

- Nagpal K M, Khargonekar P P. Filtering and smoothing in an H_∞ setting. IEEE Trans Automatic Control, 1991,36: 152~166
- 2 Yaesh I, Shaked U. Game theory approach to *opt*imal linear state estimation and its relation to the minimum H_∞-norm estimation. IEEE Trans Automatic Control, 1992,37: 828~831
- 3 Shen X, Deng L. Game theory approach to discrete H_∞ filter dseign. IEEE Trans Signal Processing, 1997,45: 1092~1095
- 4 Basar T, Bernhard P. H_∞ Optimal Control and Related Minimax Design Problems - A Dynamic Game Approach. Boston: Birkhauser, 1995
- 5 Zhong W X, Williams F W. H_∞ filtering with secure eigenvalue calculation and precise integration. International Journal for Numerical Methods in Engineering, 1999,46: 1017~1030
- 6 Zhong W X, Williams F W, Bennett P N. Extension of the Wittrick-Williams algorithm to mixed variable systems. Journal of Vibration and Acoustics, 1997,119(3): 334~340
- 7 Bohner M. Discrete Linear Hamiltonian Eigenvalue Problems. Computers & Mathematics with Applications, 1998, 36: 179~192
- 8 Bohner M. Linear Hamiltonian Difference Systems: Disconjugacy and Jacobi Type Conditions. Journal of Mathematical Analysis and Applications, 1996,199: 804~826
- 9 Zhong W X, Lin J H, Qiu C H. Computational structural mechanics and optimal control - the simulation of substructural chain theory to linear quadratic optimal control problems. International Journal for Numerical Methods in Engineering, 1992,33: 197~211
- 10 Wittrick W H, Williams F W. A general algorithm for computing natural frequencies of elastic structures. Quarterly Journal of Mechanics and Applied Mathematics, 1971,24(3): 263~284
- 11 Balakrishnan A V. Generalization of the Wittrick-Williams formula for

counting modes of flexible structures. Journal of Guidance Control and Dynamics,1995,18: 1410~1415

- 12 Yaesh I, Shaked U. A transfer function approach to the problems of discrete-time systems: H_∞-optimal linear control and filtering. IEEE Trans Automatic Control, 1991,36: 1264~1271
- Yaesh I, Shaked U. H_∞-optimal one-step-ahead output feedback control of discrete-time systems. IEEE Trans Automatic Control, 1992, 37: 1245-1250

第四章 离散系统 *H*_∞ 输出 反馈控制简介

前两章分别介绍了离散 H_{∞} 全信息控制和 H_{∞} 滤波问题,如 果可供控制器利用的只有可测量的输出信号而不是全部状态信 号,并且输出信号中还夹杂着噪声干扰,则控制问题成为输出反馈 控制或广义调节器问题^[1~4]。本章将简单介绍离散 H_{∞} 输出反馈 控制问题的基本概念和基本理论,内容主要取自文献 $1 \sim 2$,通过 对比可以发现离散 H_{∞} 输出反馈控制与前两章所介绍的离散 H_{∞} 全信息控制及离散 H_{∞} 滤波之间的区别与联系。

虽然基于连续系统 H_{∞} 控制的理论可以解决离散系统 H_{∞} 控 制器的设计问题^[2],即首先通过双线性变换 $z \rightarrow s = (z - 1)/(z + 1)$ 将离散系统转化为连续系统,然后设计该连续系统的控 制器,最后再通过逆变换 z = (1 + s)/(1 - s) 将其转化为离散系统的控制器,但这种方法存在一些固有的缺点,如无法用于时变系统或有限时间控制等问题。直接从离散系统出发研究其 H_{∞} 控制器 设计问题在理论与实际上都有其独特的优势,利用博弈论(dynamic game theory)研究离散 H_{∞} 控制问题被认为是最简单和最直观的方法^[1],因为所有的 H_{∞} 最优控制问题实际上就是一个极大极小优化问题,即零和博弈问题。 H_{∞} 优化问题大都可以利用 线性二次零和博弈(linear-quadratic zero-sum dynamic game) 理论研究解决^[1]。

4.1 时变系统输出反馈控制

首先考虑下列线性时变系统的有限时间控制问题

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}_k \boldsymbol{x}_k + \boldsymbol{B}_k \boldsymbol{u}_k + \boldsymbol{D}_k \boldsymbol{w}_k \qquad (4.1.1)$$

$$\mathbf{y}_k = \mathbf{C}_k \mathbf{x}_k + \mathbf{L}_k \mathbf{w}_k \tag{4.1.2}$$

$$\boldsymbol{z}_k = \boldsymbol{H}_k \boldsymbol{x}_k + \boldsymbol{R}_k \boldsymbol{u}_k \qquad (4.1.3)$$

其中 $k \in [0, N-1]$ 。指标泛函定义为 $J(\boldsymbol{u}, \boldsymbol{w}) = |\boldsymbol{x}_N|_{\boldsymbol{\varrho}_{\mathrm{f}}}^2 + \|\boldsymbol{x}\|_{\boldsymbol{\varrho}_k}^2 + \|\boldsymbol{u}\|^2 - \gamma^2 \|\boldsymbol{w}\|^2 - \gamma^2 ||\boldsymbol{x}_0|_{\boldsymbol{\varrho}_0}^2$ (4.1.4)

其中 $Q_f > 0, Q_0 > 0$ 。且

$$\boldsymbol{H}_{k}^{\mathrm{T}}\boldsymbol{H}_{k} = \boldsymbol{Q}_{k} \tag{4.1.5a}$$

$$\boldsymbol{R}_{k}^{\mathrm{T}}\boldsymbol{R}_{k} = \boldsymbol{I} \qquad (4.1.5\mathrm{b})$$

$$\boldsymbol{H}_{k}^{\mathrm{T}}\boldsymbol{R}_{k} = \boldsymbol{0} \tag{4.1.5c}$$

$$\boldsymbol{L}_{\boldsymbol{k}}\boldsymbol{L}_{\boldsymbol{k}}^{\mathrm{T}} = \boldsymbol{N}_{\boldsymbol{k}} > 0 \tag{4.1.5d}$$

$$\boldsymbol{D}_k \boldsymbol{L}_k^{\mathrm{T}} = \boldsymbol{0} \tag{4.1.5e}$$

$$\operatorname{rank} \begin{pmatrix} \boldsymbol{A}_k \\ \boldsymbol{H}_k \end{pmatrix} = n \tag{4.1.6a}$$

 $\operatorname{rank}\begin{bmatrix} \boldsymbol{A}_k & \boldsymbol{D}_k \end{bmatrix} = n \tag{4.1.6b}$

定理 4. 1^[1] 若在时刻 k 可以利用的量测信息为 y_i (i = 1, 2, ..., k - 1),则对于给定的正数 γ ,上述线性系统存在满足

$$\|\mathscr{T}_{zw}(\boldsymbol{u})\|_{[0,N-1]}^{2} = \frac{\|\boldsymbol{x}_{N}\|_{\boldsymbol{\varrho}_{i}}^{2} + \|\boldsymbol{x}\|_{\boldsymbol{\varrho}_{k}}^{2} + \|\boldsymbol{u}\|^{2}}{\|\boldsymbol{w}\|^{2} + \|\boldsymbol{x}_{0}\|_{\boldsymbol{\varrho}_{0}}^{2}} < \gamma^{2}$$
(4.1.7)

的 H.。控制器的条件为

(1) Riccati 方程

$$\boldsymbol{M}_{k} = \boldsymbol{A}_{k}^{\mathrm{T}} (\boldsymbol{M}_{k+1}^{-1} + \boldsymbol{B}_{k} \boldsymbol{B}_{k}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}})^{-1} \boldsymbol{A}_{k} + \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k}, \boldsymbol{M}_{N} = \boldsymbol{Q}_{\mathrm{f}}$$

$$(4.1.8a)$$

存在满足

$$\rho(\boldsymbol{M}_{k+1}\boldsymbol{D}_{k}\boldsymbol{D}_{k}^{\mathrm{T}}) < \gamma^{2} \qquad (4.1.8\mathrm{b})$$

的解。

(2) Riccati 方程

 $\boldsymbol{\Sigma}_{k+1} = \boldsymbol{A}_{k} (\boldsymbol{\Sigma}_{k}^{-1} + \boldsymbol{C}_{k}^{\mathrm{T}} \boldsymbol{N}_{k}^{-1} \boldsymbol{C}_{k} - \boldsymbol{\gamma}^{-2} \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k})^{-1} \boldsymbol{A}_{k}^{\mathrm{T}} + \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}}, \boldsymbol{\Sigma}_{0} = \boldsymbol{Q}_{0}^{-1}$ (4.1.9a)

存在满足

$$\rho(\boldsymbol{\Sigma}_{k}\boldsymbol{H}_{k}^{\mathrm{T}}\boldsymbol{H}_{k}) < \gamma^{2} \qquad (4.1.9\mathrm{b})$$

的解。

(3) 下列两个条件中任一条件成立

$$\rho(\boldsymbol{\Sigma}_{k+1}\boldsymbol{M}_{k+1}) < \boldsymbol{\gamma}^2 \tag{4.1.10a}$$

$$\rho(\boldsymbol{\Sigma}_{k}\boldsymbol{M}_{k}) < \boldsymbol{\gamma}^{2} \tag{4.1.10b}$$

其中

$$\begin{split} \widetilde{\boldsymbol{M}}_{k} &= \boldsymbol{A}_{k}^{\mathrm{T}} (\boldsymbol{M}_{k+1}^{-1} - \boldsymbol{\gamma}^{-2} \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}})^{-1} \boldsymbol{A}_{k} + \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k} \quad (4.1.11) \\ \widetilde{\boldsymbol{\Sigma}}_{k+1} &= \boldsymbol{A}_{k} (\boldsymbol{\Sigma}_{k}^{-1} - \boldsymbol{\gamma}^{-2} \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k})^{-1} \boldsymbol{A}_{k}^{\mathrm{T}} + \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}} \quad (4.1.12) \end{split}$$

若上述三个条件同时成立,则 $\gamma > \gamma_{opt}(\gamma_{opt} \in S 统的最优 H_{\infty})$ 范数),而相应的 H_{∞} 控制器为

 $\hat{\boldsymbol{u}}_{k} = -\boldsymbol{B}_{k}^{\mathrm{T}}(\boldsymbol{M}_{k+1}^{-1} + \boldsymbol{B}_{k}\boldsymbol{B}_{k}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{D}_{k}\boldsymbol{D}_{k}^{\mathrm{T}})^{-1}\boldsymbol{A}_{k}(\boldsymbol{I} - \boldsymbol{\gamma}^{-2}\boldsymbol{\Sigma}_{k}\boldsymbol{M}_{k})^{-1}\hat{\boldsymbol{x}}_{k}$ (4.1.13a)

其中

 $\hat{x}_{k+1} = A_k \hat{x}_k + B_k \hat{u}_k + A_k (\Sigma_k^{-1} + C_k^{\mathrm{T}} N_k^{-1} C_k - \gamma^{-2} Q_k)^{-1} \cdot [\gamma^{-2} Q_k \hat{x}_k + C_k^{\mathrm{T}} N_k^{-1} (\mathbf{y}_k - C_k \hat{x}_k)], \hat{x}_1 = \mathbf{0} \quad (4.1.13b)$ $\text{如 } \mathbf{R} \perp \mathbf{i} \mathbf{i} \equiv \mathbf{\uparrow} \mathbf{\hat{S}} \stackrel{\text{(4.1.13b)}}{=} \mathbf{f} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{j} \mathbf{j}$

4.2 定常系统输出反馈控制

上一节给出了时变系统输出反馈控制器存在的条件及控制器 的形式,在时变系统 H_∞ 输出反馈控制器的基础上,可以很容易地 构造定常系统的 H_∞ 控制器。考虑下列线性定常系统无限区间的 控制问题

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{B}\boldsymbol{u}_k + \boldsymbol{D}\boldsymbol{w}_k \qquad (4.2.1)$$

$$\mathbf{y}_k = C\mathbf{x}_k + L\mathbf{w}_k \tag{4.2.2}$$

$$\boldsymbol{z}_k = \boldsymbol{H}\boldsymbol{x}_k + \boldsymbol{R}\boldsymbol{u}_k \qquad (4.2.3)$$

其中(A,D)可控,(A,H)可观, $H^{T}H = Q_{\circ}$

定理 4. 2^[1] 对于给定的正数 *γ*,线性系统(4.2.1 ~ 4.2.3) 存在满足

$$\|\mathscr{T}_{zw}(\boldsymbol{u})\| < \gamma \tag{4.2.4}$$

的 H_{∞} 控制器的条件为:Riccati 方程

 $\boldsymbol{M} = \boldsymbol{A}^{\mathrm{T}}(\boldsymbol{M}^{-1} + \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{D}\boldsymbol{D}^{\mathrm{T}})^{-1}\boldsymbol{A} + \boldsymbol{Q} \quad (4.2.5)$

 $\boldsymbol{\Sigma} = \boldsymbol{A}(\boldsymbol{\Sigma}^{-1} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{N}^{-1}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{Q})^{-1}\boldsymbol{A}^{\mathrm{T}} + \boldsymbol{D}\boldsymbol{D}^{\mathrm{T}} \quad (4.2.6)$

存在半正定稳定化解。并且上述两个 Riccati 方程的解同时满足下 列两个条件

$$\rho(\boldsymbol{\Sigma}\boldsymbol{Q}) < \boldsymbol{\gamma}^2 \tag{4.2.7a}$$

$$\rho(\boldsymbol{\Sigma}\boldsymbol{M}) < \boldsymbol{\gamma}^2 \tag{4.2.7b}$$

或者同时满足与(4.2.7)等价的两个条件,即

$$\rho(\boldsymbol{M}\boldsymbol{D}\boldsymbol{D}^{\mathrm{T}}) < \gamma^2 \tag{4.2.8a}$$

$$\rho(\Sigma \widetilde{M}) < \gamma^2 \tag{4.2.8b}$$

式(4.2.7b) 及(4.2.8b) 中的 Σ和 M 和分别为

 $\boldsymbol{\Sigma} = \boldsymbol{A}(\boldsymbol{\Sigma}^{-1} - \boldsymbol{\gamma}^{-2}\boldsymbol{Q})^{-1}\boldsymbol{A}^{\mathrm{T}} + \boldsymbol{D}\boldsymbol{D}^{\mathrm{T}}$ (4.2.9)

$$\widetilde{\boldsymbol{M}} = \boldsymbol{A}^{\mathrm{T}} (\boldsymbol{M}^{-1} - \boldsymbol{\gamma}^{-2} \boldsymbol{D} \boldsymbol{D}^{\mathrm{T}})^{-1} \boldsymbol{A} + \boldsymbol{Q} \qquad (4.2.10)$$

在上述条件成立的前提下,相应的 H_∞ 控制器为

 $\hat{\boldsymbol{u}}_k = -\boldsymbol{B}^{\mathrm{T}}(\boldsymbol{M}^{-1} + \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{D}\boldsymbol{D}^{\mathrm{T}})^{-1}\boldsymbol{A}(\boldsymbol{I} - \boldsymbol{\gamma}^{-2}\boldsymbol{\Sigma}\boldsymbol{M})^{-1}\hat{\boldsymbol{x}}_k$

(4.2.11a)

其中

及

 $\hat{\boldsymbol{x}}_{k+1} = A\hat{\boldsymbol{x}}_{k} + B\boldsymbol{u}_{k} + A(\boldsymbol{\Sigma}^{-1} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{N}^{-1}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{Q})^{-1} \boldsymbol{\cdot} [\boldsymbol{\gamma}^{-2}\boldsymbol{Q}\hat{\boldsymbol{x}}_{k} + \boldsymbol{Q}\hat{\boldsymbol{x}}_{k} +$

 $C^{T}N^{-1}(y_{k} - C\hat{x}_{k})$], $\hat{x}_{1} = 0$ (4.2.11b) 如果上述条件中的任何一个不成立,则 $\gamma < \gamma_{opt}$,即不存在满足条 件(4.2.4)的控制器。

与连续系统 H_∞ 输出反馈控制器存在的条件比较可以发现, 离散 H_∞ 输出反馈控制问题相对复杂一些,对离散 H_∞ 输出反馈 控 制理论更深入的研究见本章所列参考文献。基于上述结果就可 以 设计离散输出反馈 H_∞ 控制器。文献 5,6 研究了离散线性定常 系统无限时间 H_∞ 控制中的最优范数计算问题。

4.3 **延时反馈控制**

如果信号传输有一定的迟滞,即在时刻 k 可以利用的输出信息只有 $y_i(i = 1, 2, \dots, k - \theta)$,其中 θ 是一给定的正整数,则称这个问题为延时量测反馈控制问题,也可以称为 θ 步预测控制问题。 4.1节所讨论的问题可以认为是预测控制问题的一个特例,即一步预测控制问题。

考虑下列线性系统的延时量测反馈控制问题

 $\boldsymbol{x}_{k+1} = \boldsymbol{A}_k \boldsymbol{x}_k + \boldsymbol{B}_k \boldsymbol{u}_k + \boldsymbol{D}_k \boldsymbol{w}_k \qquad (4.3.1)$

 $\mathbf{y}_k = \mathbf{C}_k \mathbf{x}_k + \mathbf{L}_k \mathbf{w}_k \tag{4.3.2}$

$$\boldsymbol{z}_k = \boldsymbol{H}_k \boldsymbol{x}_k + \boldsymbol{R}_k \boldsymbol{u}_k \qquad (4.3.3)$$

其中 $k \in [0, N-1]$ 。指标泛函仍然定义为

 $J(\boldsymbol{u},\boldsymbol{w}) = \|\boldsymbol{x}_N\|_{\boldsymbol{\mathcal{Q}}_{\mathrm{f}}}^2 + \|\boldsymbol{x}\|_{\boldsymbol{\mathcal{Q}}_k}^2 + \|\boldsymbol{u}\|^2 - \gamma^2 \|\boldsymbol{w}\|^2 - \gamma^2 \|\boldsymbol{x}_0\|_{\boldsymbol{\mathcal{Q}}_0}^2$ (4.3.4)

其中 $Q_f > 0, Q_0 > 0,$ 其它条件与式(4.1.5)和(4.1.6)相同。 定理 4.3^[1] 若在时刻 k可供控制器利用的量测信息只有 $y_i(i = 1, 2, \dots, k - \theta),$ 则对于给定的正数 γ ,上述线性系统存在满

足

$$\|\mathscr{T}_{zw}(\boldsymbol{u})\|_{[0,N-1]} < \gamma \qquad (4.3.5)$$

的 H.。控制器的条件为

(1) 对于 $k \in [0, N]$,下列 Riccati 方程的解存在

 $\boldsymbol{M}_{k} = \boldsymbol{A}_{k}^{\mathrm{T}} (\boldsymbol{M}_{k+1}^{-1} + \boldsymbol{B}_{k} \boldsymbol{B}_{k}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}})^{-1} \boldsymbol{A}_{k} + \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k}, \boldsymbol{M}_{N} = \boldsymbol{Q}_{\mathrm{f}}$ (4.3.6a)

且满足

$$\rho(\boldsymbol{M}_{k+1}\boldsymbol{D}_{k}\boldsymbol{D}_{k}^{\mathrm{T}}) < \gamma^{2} \qquad (4.3.6b)$$

(2) 对于
$$k \in [0, N - \theta]$$
,下列 Riccati 方程的解存在
 $\Sigma = A (\Sigma^{-1} + C^{T}N^{-1}C - \Sigma^{-2}H^{T}H)^{-1}A^{T} + D D^{T} \Sigma - \theta^{-1}$

$$\boldsymbol{\Sigma}_{k+1} = \boldsymbol{A}_{k} (\boldsymbol{\Sigma}_{k}^{*} + \boldsymbol{C}_{k}^{*} \boldsymbol{N}_{k}^{*} \boldsymbol{C}_{k} - \boldsymbol{I}^{*} \boldsymbol{H}_{k}^{*} \boldsymbol{H}_{k})^{*} \boldsymbol{A}_{k}^{*} + \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{*}, \boldsymbol{\Sigma}_{0}^{*} = \boldsymbol{Q}_{0}^{*} \boldsymbol{A}_{k}^{*} \boldsymbol{Q}_{k}^{*} \boldsymbol{A}_{k}^{*} + \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{*}, \boldsymbol{\Sigma}_{0}^{*} = \boldsymbol{Q}_{0}^{*} \boldsymbol{A}_{k}^{*} \boldsymbol{A}_{k$$

(3) 对于 $\tau = 0, \dots, N - 1, k = \tau + 1$,下列 Riccati 方程的解存在

 $\widetilde{\boldsymbol{\Sigma}}_{k+1} = \boldsymbol{A}_{k} (\widetilde{\boldsymbol{\Sigma}}_{k}^{-1} - \boldsymbol{\gamma}^{-2} \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k})^{-1} \boldsymbol{A}_{k}^{\mathrm{T}} + \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}} \quad (4.3.8a)$ 其初始条件为

$$\begin{cases} \widetilde{\boldsymbol{\Sigma}}_{1} = \boldsymbol{Q}_{0}^{-1} & (\tau \leqslant \theta) \\ \widetilde{\boldsymbol{\Sigma}}_{\tau-\theta+1} = \boldsymbol{\Sigma}_{\tau-\theta+1} & (\tau > \theta) \end{cases}$$
(4.3.8b)

且此 Riccati 方程的解满足

$$\rho(\boldsymbol{\Sigma}_{k}\boldsymbol{Q}_{k}) < \boldsymbol{\gamma}^{2} \tag{4.3.9}$$

(4) 对于所有的 $\tau \in [0,N]$

$$\rho(\boldsymbol{\Sigma}_{\tau+1}\boldsymbol{M}_{\tau+1}) < \boldsymbol{\gamma}^2 \tag{4.3.10}$$

若上述四个条件同时成立,则 $\gamma > \gamma_{opt}$,相应的 H_{∞} 控制器为 $\hat{u}_{\tau} = -B_{\tau}^{T}(M_{\tau+1}^{-1} + B_{\tau}B_{\tau}^{T} - \gamma^{-2}D_{\tau}D_{\tau}^{T})^{-1}A_{\tau}(I - \gamma^{-2}\widetilde{\Sigma}_{\tau}M_{\tau})^{-1}\widetilde{x}_{\tau}$ (4.3.11)

其中

方程的初始条件为

而 $\hat{x}_{\tau=\theta+1}$ 由式(4.1.13b) 给定。如果上述四个条件中的任何一个 不成立,则不存在满足条件式(4.3.5) 的控制器。

4.4 即时反馈控制

本章 4.1 节中所介绍的输出反馈控制问题中假设 k 时刻控制器可以利用的输出信息为 y_i ($i = 1, 2, \dots, k - 1$),是一个一步预测控制问题。若在 k 时刻可以利用的输出信息为 y_i ($i = 1, 2, \dots, k$),即时刻 k 的信息也可以利用,则成为即时反馈控制问题。下面的定理给出了即时反馈控制器存在的条件和形式。

定理 4. 4^[1] 若在时刻 *k* 可以利用的输出信息为 *y_i*(*i* = 1,2, ...,*k*),则对于给定的正数 *γ*,线性系统(式 4. 3. 1 ~ 4. 3. 3)存在满足

 $\|\mathscr{T}_{zw}(\boldsymbol{u})\|_{[0,N-1]} < \gamma$ (4.4.1) 的 H_{∞} 控制器的条件为:

(1) 下列 Riccati 方程的解存在

 $\boldsymbol{M}_{k} = \boldsymbol{A}_{k}^{\mathrm{T}}(\boldsymbol{M}_{k+1}^{-1} + \boldsymbol{B}_{k}\boldsymbol{B}_{k}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{D}_{k}\boldsymbol{D}_{k}^{\mathrm{T}})^{-1}\boldsymbol{A}_{k} + \boldsymbol{H}_{k}^{\mathrm{T}}\boldsymbol{H}_{k}, \boldsymbol{M}_{N} = \boldsymbol{Q}_{\mathrm{f}}$ (4.4.2a)

且满足

 $\rho(\boldsymbol{M}_{k+1}\boldsymbol{D}_{k}\boldsymbol{D}_{k}^{\mathrm{T}}) < \gamma^{2} \qquad (4.4.2\mathrm{b})$

(2) 下列 Riccati 方程的解存在

 $\boldsymbol{\Sigma}_{k+1} = \boldsymbol{A}_{k} (\boldsymbol{\Sigma}_{k}^{-1} + \boldsymbol{C}_{k}^{\mathrm{T}} \boldsymbol{N}_{k}^{-1} \boldsymbol{C}_{k} - \boldsymbol{\gamma}^{-2} \boldsymbol{H}_{k}^{\mathrm{T}} \boldsymbol{H}_{k})^{-1} \boldsymbol{A}_{k}^{\mathrm{T}} + \boldsymbol{D}_{k} \boldsymbol{D}_{k}^{\mathrm{T}}, \boldsymbol{\Sigma}_{0} = \boldsymbol{Q}_{0}^{-1}$ (4.4.3a)

且对所有的 $\tau = 0, \dots, N - 1$ 满足 $\Sigma_{\tau}^{-1} + C_{\tau}^{T} N_{\tau}^{-1} C_{\tau} - \gamma^{-2} H_{\tau}^{T} H_{\tau} > 0$ (4.4.3b) (3) 对所有的 $\tau = 0, \dots, N - 1$ 有 $\rho(\Sigma_{\tau+1} M_{\tau+1}) < \gamma^{2}$ (4.4.4) 若上述条件成立,则存在 $\gamma > \gamma_{opt}$,而相应的 H_{∞} 控制器为

 $\widetilde{\boldsymbol{u}}_{\tau} = \boldsymbol{B}_{\tau}^{\mathrm{T}} (\boldsymbol{M}_{\tau+1}^{-1} + \boldsymbol{B}_{\tau} \boldsymbol{B}_{\tau}^{\mathrm{T}} - \gamma^{-2} \boldsymbol{D}_{\tau} \boldsymbol{D}_{\tau}^{\mathrm{T}})^{-1} \boldsymbol{A}_{\tau} \widetilde{\boldsymbol{x}}_{\tau} \qquad (4.4.5)$

(4.4.6)

$$\widetilde{\boldsymbol{x}}_{\tau} = [\boldsymbol{I} - \boldsymbol{\Sigma}_{\tau} (\boldsymbol{\gamma}^{-2} \boldsymbol{M}_{\tau} - \boldsymbol{C}_{\tau}^{\mathrm{T}} \boldsymbol{N}_{\tau}^{-1} \boldsymbol{C}_{\tau})]^{-1} (\hat{\boldsymbol{x}}_{\tau} + \boldsymbol{\Sigma}_{\tau} \boldsymbol{C}_{\tau}^{\mathrm{T}} \boldsymbol{N}_{\tau}^{-1} \boldsymbol{y}_{\tau})$$

上式中的 \hat{x}_{τ} 由式(4.1.13b) 给定。如果上述条件中的任何一个不 成立,则不存在满足条件(4.4.1) 的控制器。

参考文献

- Basar T, Bernhard P. H_∞ Optimal Control and Related Minimax Design Problems — A Dynamic Game Approach. Boston: Birkhauser,1995
- 2 Green M , Limbeer D J N. Linear Robust Control. New Jersey: Prentice Hall, 1995
- 3 Iglesias P A, Glover K. State-space approach to discrete time H_{∞} control. International Journal of Control, 1991,54(5): 1031~1073.
- 4 Stoorvogel A. The discrete time H_{∞} control problem with measurement feedback. SIAM Journal on Control and Optimization, 1992,30(1): 180 ~202
- 5 Chen B M. Robust and H_{∞} Control. London: Springer, 2000
- 6 Lin W W, Wang C S, Xu Q F. Numerical computation of the minimal H_∞ norm of the discrete-time output feedback control problem. SIAM Journal on Numerical Analysis, 2000,38(2): 515~547

其中

第五章 连续系统 H_∞ 滤波

前面的章节中介绍了离散系统 H_{∞} 控制和滤波的基本理论和 有关的算法。本章将首先介绍连续系统的 H_{∞} 滤波理论,然后介绍 系统设计中一些关键计算问题的求解方法。大多数 H_{∞} 控制理论 专著中都是先介绍 H_{∞} 控制问题,然后基于对偶系统的概念研究 H_{∞} 滤波问题^[1~3]。但本书将首先介绍 H_{∞} 滤波问题,这是为了更 方便地基于 Hamilton 微分系统的特征值理论介绍算法。在第二章 和第三章中已经介绍了离散 H_{∞} 控制和 H_{∞} 滤波系统的最优 H_{∞} 范 数 γ_{opt} 与 Hamilton 差分系统特征值之间的关系,并给出了相应 的计算方法。通过对连续系统进行适当的离散化,也可以将这些方 法用于连续系统。

5.1 连续系统 H_∞ 滤波

考虑下列线性系统在区间 $t \in [0, t_{\rm f}]$ 上的 H_{∞} 滤波器设计问题

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} + \mathbf{B}(t)\mathbf{w}, \mathbf{x}(0) = \mathbf{x}_0$$
 (5.1.1a)

$$\mathbf{y} = \mathbf{C}(t)\mathbf{x} + \mathbf{D}(t)\mathbf{v}$$
 (5.1.1b)

$$\boldsymbol{z} = \boldsymbol{L}(t)\boldsymbol{x} \tag{5.1.1c}$$

其中干扰向量 $w, v \in L_2[0, t_f], A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times l}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}, L \in \mathbb{R}^{p \times n}, D^T D = I_o \exists \hat{x}(t)$ 表示状态x(t)的滤波估计, $\hat{x}(0)$ = \hat{x}_0 为给定值,并定义

$$\|\mathscr{R}\|_{\infty,[0,t_{\mathrm{f}}]}^{2} = \sup_{\boldsymbol{w}\neq 0} \frac{\int_{0}^{t_{\mathrm{f}}} (\hat{\boldsymbol{z}} - \boldsymbol{L}\boldsymbol{x})^{\mathrm{T}} (\hat{\boldsymbol{z}} - \boldsymbol{L}\boldsymbol{x}) \mathrm{d}t}{(\hat{\boldsymbol{x}}_{0} - \boldsymbol{x}_{0})^{\mathrm{T}} \boldsymbol{Q}_{0}^{-1} (\hat{\boldsymbol{x}}_{0} - \boldsymbol{x}_{0}) + \int_{0}^{t_{\mathrm{f}}} (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{w} + \boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}) \mathrm{d}t}$$
(5.1.2)

其中 $\hat{z} - Lx$ 是估计误差, $\hat{x}_0 - x_0$ 是对初始状态的估计误差,对称 矩阵 $Q_0^{-1} > 0_0$ 要求 H_∞ 滤波器满足条件

$$\|\mathscr{R}\|_{[0,t_{\rm f}]}^2 < \gamma^2 \tag{5.1.3}$$

而正数 γ 的下界定义为 γ_{opt} 。

定理 5.1^[1] 当且仅当 Riccati 微分方程

 $\dot{\boldsymbol{Q}}(t) = \boldsymbol{B}(t)\boldsymbol{B}^{\mathrm{T}}(t) + \boldsymbol{A}(t)\boldsymbol{Q}(t) + \boldsymbol{Q}(t)\boldsymbol{A}^{\mathrm{T}}(t) -$

 $\boldsymbol{Q}(t) [\boldsymbol{C}^{\mathrm{T}}(t)\boldsymbol{C}(t) - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}(t)\boldsymbol{L}(t)]\boldsymbol{Q}(t)$

 $\boldsymbol{\varrho}(0) = \boldsymbol{\varrho}_0 \tag{5.1.4}$

在区间 $t \in [0, t_f]$ 上有解时存在满足条件的 H_{∞} 滤波器。中心 H_{∞} 滤波器的形式为

$$\dot{\hat{x}} = A(t)\hat{x} + Q(t)C^{\mathrm{T}}(t)[y - C(t)\hat{x}], \hat{x}(0) = \hat{x}_{0} \qquad (5.1.5a)$$
$$\hat{z} = L(t)\hat{x} \qquad (5.1.5b)$$

当系统矩阵为常值矩阵时,则成为定常系统的 H_{∞} 滤波问题。 此时的 Riccati 微分方程(5.1.4)可简写成

 $\dot{\boldsymbol{Q}}(t) = \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} + \boldsymbol{A}\boldsymbol{Q}(t) + \boldsymbol{Q}(t)\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{Q}(t)[\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{Q}(t)]\boldsymbol{Q}(t) - \boldsymbol{Q}(t)\boldsymbol{Q}(t)\boldsymbol{Q}(t) - \boldsymbol{Q}(t)\boldsymbol{Q}(t)\boldsymbol{Q}(t)\boldsymbol{Q}(t) - \boldsymbol{Q}(t)\boldsymbol{Q$

 $\gamma^{-2}L^{\mathrm{T}}L]Q(t)$

 $Q(0) = Q_0$ (5.1.6) 系统的状态方程也可以写成式(5.1.7)的形式。当 $t_f \rightarrow \infty$ 时,问题

成为定常系统无限时间滤波问题。

$$\dot{x} = Ax + Bw, x(0) = x_0$$
 (5.1.7a)
 $y = Cx + Dv$ (5.1.7b)

 $z = Lx \tag{5.1.7c}$

其中(A,B)可控,(A,C)可观。

定理 5. 2^[1] 当且仅当 Riccati 代数方程

 $BB^{T} + AQ + QA^{T} - Q(C^{T}C - \gamma^{-2}L^{T}L)Q = 0$ (5.1.8) 存在使 $A - Q(C^{T}C - \gamma^{-2}L^{T}L)$ 渐进稳定的半正定解时,存在满足 条件的 H_{∞} 滤波器,而中心滤波器为

> $\dot{\hat{x}} = A\hat{x} + QC^{T}(y - C\hat{x}), \hat{x}(0) = \hat{x}_{0}$ (5.1.9a) $\hat{z} = L\hat{x}$ (5.1.9b)

上述 H_{∞} 滤波器都是次优滤波器,通过不断减小 γ ,可以构造 一系列次优 H_{∞} 滤波器逼近"最优" H_{∞} 滤波器,直到满足条件的次 优 H_{∞} 滤波器不存在为止,此时 $\gamma = \gamma_{opt}^{[2,3]}$ 。因为 Riccati 微分方程 解的存在性与次优 H_{∞} 滤波器存在条件等价,此时 Riccati 微分方 程在 $[0,t_{f}]$ 区间上无解, γ_{opt} 则是使 Riccati 微分方程在 $[0,t_{f}]$ 区间 上 无解的所有 γ 值的上界。基于这一基本事实,可以建立 γ_{opt} 与 Hamilton 微分系统特征值的联系。

5.2 Hamilton 微分系统特征值

5.2.1 Hamilton 微分方程的共轭点

Riccati 方程(5.1.6) 的解与 Hamilton 微分方程

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\boldsymbol{\lambda}} \end{bmatrix} = \begin{bmatrix} A & BB^{\mathrm{T}} \\ C^{\mathrm{T}}C - \gamma^{-2}L^{\mathrm{T}}L & -A^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \boldsymbol{\lambda} \end{bmatrix}$$
(5. 2. 1a)

 $\boldsymbol{x}(0) = \boldsymbol{Q}_0 \boldsymbol{\lambda}(0), \boldsymbol{\lambda}(t_{\rm f}) = \boldsymbol{0} \qquad (5.2.1 \mathrm{b})$

的状态转移矩阵及其边值问题的特征值之间有密切的联系。定义

$$H(\boldsymbol{x},\boldsymbol{\lambda}) = \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} - \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} (\boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} - \boldsymbol{\gamma}^{-2} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L}) \boldsymbol{x} + \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\lambda}$$
(5. 2. 2)

则上述边值问题可由下列变分问题导出

$$J = \int_{0}^{t_{\mathrm{f}}} [\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - H(\boldsymbol{x}, \boldsymbol{\lambda})] \mathrm{d}t + \frac{1}{2} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{\mathcal{Q}}_{0}^{-1} \boldsymbol{x}_{0}, \delta J = 0 \ (5. \ 2. \ 3)$$

当方程(5.2.1)存在非平凡解, 即 γ^{-2} 为其特征值时, 利用式(5.1.1a)可将方程(5.2.3) 变换为

$$\gamma^{-2} = \operatorname{st} \frac{\Pi_1}{\Pi_2} \tag{5.2.4}$$

其中

$$\Pi_{1} = \int_{0}^{t_{1}} \left(\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x} - \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\lambda} \right) \mathrm{d}t + \frac{1}{2} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{Q}_{0}^{-1} \boldsymbol{x}_{0}$$

$$(5. 2. 5a)$$

$$\Pi_2 = \int_0^{t_{\rm f}} \frac{1}{2} \boldsymbol{x}^{\rm T} \boldsymbol{L}^{\rm T} \boldsymbol{L} \boldsymbol{x} \mathrm{d} t \qquad (5.2.5\mathrm{b})$$

并记

$$R(\mathbf{x}, \boldsymbol{\lambda}) = \frac{\boldsymbol{\Pi}_1}{\boldsymbol{\Pi}_2} \tag{5.2.6}$$

定义方程(5.2.1)的状态转移矩阵为 Φ(0,t)

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\Phi}(0,t) = \boldsymbol{H}\boldsymbol{\Phi}(0,t), \boldsymbol{\Phi}(0,0) = \boldsymbol{I}$$
 (5.2.7)

其中

$$H = \begin{bmatrix} A & BB^{T} \\ C^{T}C - \gamma^{-2}L^{T}L & -A^{T} \end{bmatrix}$$
(5.2.8)

则

$$\begin{bmatrix} \boldsymbol{x}(t) \\ \boldsymbol{\lambda}(t) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Phi}_{11}(0,t) & \boldsymbol{\Phi}_{12}(0,t) \\ \boldsymbol{\Phi}_{21}(0,t) & \boldsymbol{\Phi}_{22}(0,t) \end{bmatrix} \begin{bmatrix} \boldsymbol{x}(0) \\ \boldsymbol{\lambda}(0) \end{bmatrix}$$
(5. 2. 9)

并可以证明[1]

$$\mathbf{x}(t) = \mathbf{Q}(t)\boldsymbol{\lambda}(t) \tag{5.2.10}$$

其中

$$\boldsymbol{Q}(t) = \begin{bmatrix} \boldsymbol{\Phi}_{11}(0,t)\boldsymbol{Q}_0 + \boldsymbol{\Phi}_{12}(0,t) \end{bmatrix} \begin{bmatrix} \boldsymbol{\Phi}_{21}(0,t)\boldsymbol{Q}_0 + \boldsymbol{\Phi}_{22}(0,t) \end{bmatrix}^{-1}$$
(5.2.11)

即 Riccati 微分方程的解可以表示成式(5.2.11)的形式。

现在介绍共轭点的概念,对于区间 $[0,t_f]$ 内的 $t_0,t_1(t_0 \le t_1)$ 及 给定的 Q_0 ,如果对偶微分方程(5.2.1a)存在非平凡解且满足 $x(t_0)$ = $Q_0\lambda(t_0),\lambda(t_1) = 0$,则称 t_0,t_1 为其共轭点。

定理 5.3 若 $\sigma(0,t)$ 是方程(5.2.1) 的状态转移矩阵,则矩阵 $\sigma_{21}(t_0,t_1)Q_0 + \sigma_{22}(t_0,t_1)$ 是奇异矩阵 $\Leftrightarrow t_0 \in t_1$ 为共轭点。如果不存在 $t \in [0,t_f]$ 使得 0 和 t 为共轭点,则 Riccati 方程(5.1.6) 在[0, t_f] 上有解。

证明 设 t_0, t_1 为共轭点,则方程存在非平凡解且 $\mathbf{x}(t_0) = \mathbf{Q}_0 \boldsymbol{\lambda}(t_0), \boldsymbol{\lambda}(t_1) = \mathbf{0},$ 所以

 $\begin{bmatrix} \boldsymbol{x}(t) \\ \boldsymbol{\lambda}(t) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Phi}_{11}(t_0, t) & \boldsymbol{\Phi}_{12}(t_0, t) \\ \boldsymbol{\Phi}_{21}(t_0, t) & \boldsymbol{\Phi}_{22}(t_0, t) \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_0 \\ \boldsymbol{I} \end{bmatrix} \boldsymbol{\lambda}(t_0)$

其中 $\lambda(t_0) \neq 0$,这是因为 x(t) 与 $\lambda(t)$ 不可能同时为 0,并且 $\Phi(0,t)$ 非奇异。由于

 $\lambda(t_1) = [\mathbf{\Phi}_{21}(t_0, t_1) \mathbf{Q}_0 + \mathbf{\Phi}_{22}(t_0, t_1)] \lambda(t_0) = \mathbf{0}$ 所以必然有 $\mathbf{\Phi}_{21}(t_0, t_1) \mathbf{Q}_0 + \mathbf{\Phi}_{22}(t_0, t_1)$ 奇异。

再设 $\Phi_{21}(t_0,t_1)Q_0 + \Phi_{22}(t_0,t_1)$ 奇异,则必存在向量 $g \neq 0$,满 足 $\mathbf{0} = [\Phi_{21}(t_0,t_1)Q_0 + \Phi_{22}(t_0,t_1)]g$,令 $\lambda(t_0) = g$,则有 $\mathbf{x}(t_0) = Q_0\lambda(t_0),\lambda(t_1) = \mathbf{0}$,又因为 $\lambda(t)$ 不恒为 $\mathbf{0}$,所以 t_0,t_1 为共轭点。

另外,因为 Riccati 微分方程的解可以表示为式(5.2.11) 的形 式,所以如果不存在 $t \in [0,t_f]$ 使得 0 和 t 为共轭点,则 $\boldsymbol{\sigma}_{21}(0,t)\boldsymbol{Q}_0$ + $\boldsymbol{\sigma}_{22}(0,t)$ 必然可逆,从而 Riccati 方程(5.1.6) 在 $[0,t_f]$ 上有解。

5.2.2 Rayleigh 原理

现在考察式(5.2.1)的特征值问题,显然仅当 γ^{-2} 是其特征值时,两端边值问题存在非平凡解。边界条件 $x(0) = Q_0\lambda(0),\lambda(t_f) = 0$ 表明 0 和 t_f 是此边值问题的共轭点,所以 $\mathcal{O}_{21}(0,t_f)Q_0$ +

方程(5.2.1)的各阶特征值满足 $\gamma_1^{-2} \leq \gamma_2^{-2} \leq \cdots \leq \gamma_m^{-2}$,所以 $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_m$,即 γ_1 是使两端边值问题存在非平凡解的 γ 值的 上界,也是使 Riccati 微分方程(5.1.6)在[0, t_f]上无解的 γ 值的上 界。两端边值问题的一阶特征值 γ_1^{-2} 与最优 H_{∞} 范数 γ_{opt} 之间的关 系为 $\gamma_1 = \gamma_{opt}$ 。因此最优 H_{∞} 范数可以通过计算与 Riccati 微分方 程相关的 Hamilton 微分方程两端边值问题的特征值得到。事实 上,对于两端边值问题(5.2.1)有如下定理。

定理 5. 4^[4~5] 若(A1):矩阵 BB^T, C^TC, L^TL 对称,且 BB^T ≥ 0, L^TL ≥ 0; (A2): $S_{13} \begin{bmatrix} -x(0) \\ x(t_f) \end{bmatrix} + S_{24} \begin{bmatrix} \lambda(0) \\ \lambda(t_f) \end{bmatrix} = 0$,并记满足条件的 (x, λ) $\in \Omega$,其中 S_{13} , $S_{24} \in \mathbb{R}^{2n \times 2n}$,且 rank (S_{13} , S_{24}) = 2n, $S_{13}S_{24}^{T}$ = $S_{24}S_{13}^{T}$; (A3): (A, BB^T) 可控, (A, BB^T, L^TL)"强可观"。则

(1) 边值问题(5.2.1) 存在可数无穷多个特征值 $\gamma_k^{-2}, \gamma_1^{-2} \ll$ $\gamma_2^{-2} \ll \cdots$ (包括重特征值),及相应的正交特征函数(ϕ_1, Ψ_1),(ϕ_2 , Ψ_2),…,且(ϕ_i, ϕ_j) = $\int_0^{t_i} \phi_i^{\mathrm{T}}(t) L^{\mathrm{T}} L \phi_j(t) \mathrm{d}t = \delta_{ij}$. (2) Rayleigh 原理:对于 $m = 0, 1, 2, \cdots, 有$

 $\gamma_{m+1}^{-2} = \min\{R(\boldsymbol{x},\boldsymbol{\lambda}) \mid (\boldsymbol{x},\boldsymbol{\lambda}) \in \boldsymbol{\Omega}, \boldsymbol{x} \neq \boldsymbol{0}, \boldsymbol{x} \perp \boldsymbol{\phi}_{1}, \cdots, \boldsymbol{\phi}_{m}\}$ (5.2.12)

其中 $R(x, \lambda)$ 由式(5.2.6) 定义,具有广义 Rayleigh 商的形式。而 $x \perp \phi_i (i = 1, 2, \dots, m)$ 是指

$$\langle \boldsymbol{x}, \boldsymbol{\phi}_i \rangle = \int_0^{t_{\mathrm{f}}} \boldsymbol{x}^{\mathrm{T}}(t) \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{\phi}_i(t) \mathrm{d}t = 0$$

(3) 展开定理

 $\lim_{m \to \infty} \| \mathbf{x} - \mathbf{s}_m \| = 0$ (5.2.13) $c_{i} = \langle \boldsymbol{\phi}_{i}, \mathbf{r} \rangle = \int_{0}^{t_{i}} \boldsymbol{\phi}_{i}^{\mathrm{T}}(t) \mathbf{I}^{\mathrm{T}} \mathbf{I} \mathbf{r}(t) \mathrm{d}t$

其中
$$s_m = \sum_{i=1}^m c_i \phi_i$$
, 而 $c_i = \langle \phi_i, \mathbf{x} \rangle = \int_0^{t_i} \phi_i^{\mathrm{T}}(t) L^{\mathrm{T}} L \mathbf{x}(t) \mathrm{d}t$

这个定理可以认为是 Sturm-Liouville 特征值定理的推广^[5]。 这里所研究的问题显然满足定理中的前提条件,分别说明如下:

(A1) 显然满足。

(A2) 因为 $S_{13} = \begin{bmatrix} Q_0 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, S_{24} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix},$ 显然 rank (S_{13}, S_{24}) = $2n, S_{13}S_{24}^{T} = S_{24}S_{13}^{T}$ 。

(A3) 因为(A,B) 可控,显然有 rank $P_c = n$ 及 rank($P_c P_c^T$) = n,其中矩阵

$$P_{c} = \begin{bmatrix} B, AB, A^{2}B, \cdots, A^{n-1}B \end{bmatrix}$$
$$P_{c}P_{c}^{\mathrm{T}} = \begin{bmatrix} B, AB, \cdots, A^{n-1}B \end{bmatrix} \begin{bmatrix} B, AB, \cdots, A^{n-1}B \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} BB^{\mathrm{T}}, ABB^{\mathrm{T}}, \cdots, A^{n-1}BB^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} I, A, \cdots, A^{n-1} \end{bmatrix}^{\mathrm{T}}$$
$$P_{co} = \begin{bmatrix} BB^{\mathrm{T}}, ABB^{\mathrm{T}}, \cdots, A^{n-1}BB^{\mathrm{T}} \end{bmatrix}, A_{o} = \begin{bmatrix} I, A, \cdots, A^{n-1} \end{bmatrix}^{\mathrm{T}}$$

令 则有

$$n = \operatorname{rank}(\boldsymbol{P}_{c}\boldsymbol{P}_{c}^{\mathrm{T}}) = \operatorname{rank}(\boldsymbol{P}_{co}\boldsymbol{A}_{o})$$

$$\leqslant \min\{\operatorname{rank}(\boldsymbol{P}_{co}), \operatorname{rank}(\boldsymbol{A}_{o})\}$$
(5.2.14)

而 rank(A_o) = n,所以应有 rank(P_{co}) $\geq n$,但 $P_{co} \in \mathbb{R}^{n \times nm}$,因而 rank(P_{co}) = n,则(A, BB^{T})可控的条件满足。因为矩阵 L的选择应 确保在区间[t_1, t_2]上 $Lx(t) \equiv 0$ 时必有 $x(t) \equiv 0$,否则状态估计便 无意义,所以也满足文献 4 中所谓的"强可观"条件。

由于 H_{∞} 控制问题及"控制型"Riccati 微分方程与 H_{∞} 滤波问 题及"滤波型"Riccati 微分方程存在一定的对偶关系。利用这一对 偶关系可以自然地将本章所述的定理与结论应用到 H_{∞} 控制问 题,而且还应注意到对偶系统的 H_{∞} 范数是相等的^[2]。

5.3 Hamilton 微分方程 特征值问题离散化

特征值问题可以表达为广义 Rayleigh 商驻值的形式

(5.2.4),可以用 Rayleigh-Ritz 法计算特征值,也可以用差分法、 打靶法等方法计算。正如第二章和第三章中所指出的,如果只需计 算最小特征值,采用类似于 Householder 特征值计数方法的扩展 Wittrick-Williams 算法^[8]更为合适。本节介绍 Hamilton 微分方程 的离散化,及其与 Sturm-Liouville 型微分方程特征值问题的联 系。

5.3.1 Hamilton 及 Sturm-Liouville 型微分方程离散化

将区间 $[0,t_f]$ 等间距离散为K段,并令 $\eta = t_{k+1} - t_k(k = 0,1, 2, \dots, K-1)$,且 $K\eta = t_f, t_0 = 0, t_K = t_f$ 。对于任意区段 (t_k, t_{k+1}) ,若 给定两端边值 $x(t_k)$ 及 $\lambda(t_{k+1})$,当然可以确定微分方程(5.2.1)在 (t_k, t_{k+1}) 内的解。采取对x向前差分,对 λ 向后差分,离散化后有差分方程

 $\boldsymbol{x}_{k+1} = \boldsymbol{F}\boldsymbol{x}_k + \boldsymbol{G}\boldsymbol{\lambda}_{k+1}, \ \boldsymbol{x}_0 = \boldsymbol{Q}_0\boldsymbol{\lambda}_0$ (5.3.1a)

 $\boldsymbol{\lambda}_{k} = -\boldsymbol{E}\boldsymbol{x}_{k} + \boldsymbol{F}^{\mathrm{T}}\boldsymbol{\lambda}_{k+1}, \ \boldsymbol{\lambda}_{K} = \boldsymbol{0}$ (5.3.1b)

差分方程中各系数矩阵 F,G,E 是计算特征值的基本数据,其性质 和意义将在后文解释。

考虑同样定义在区间 $t \in [0, t_f]$ 上的 Sturm-Liouville 型二阶 微分方程

 $K_{22}\ddot{x} + (K_{21} - K_{12})\dot{x} - K_{11}x + \rho Mx = 0$ (5.3.2) 边界条件为 $x(0) = x_0, x(t_f) = x_f, B K_{11}, K_{22}, M$ 为对称矩阵, K_{22} 非奇异, $K_{12} = K_{21}^T, \exists \rho$ 的取值可以使方程存在满足边界条件的非 平凡解时, 称 ρ 为其特征值, 而对应的解为特征函数。定义

 $L(\boldsymbol{x}, \dot{\boldsymbol{x}}) = \dot{\boldsymbol{x}}^{\mathrm{T}} \boldsymbol{K}_{22} \dot{\boldsymbol{x}} + \dot{\boldsymbol{x}}^{\mathrm{T}} \boldsymbol{K}_{21} \boldsymbol{x} + \boldsymbol{x}^{\mathrm{T}} \boldsymbol{K}_{12} \dot{\boldsymbol{x}} + \boldsymbol{x}^{\mathrm{T}} (\boldsymbol{K}_{11} - \rho \boldsymbol{M}) \boldsymbol{x}$ (5.3.3)

则微分方程边值问题与下列变分驻值问题等价

 $\delta \int_{0}^{t_{\mathrm{f}}} L(\boldsymbol{x}, \dot{\boldsymbol{x}}) \mathrm{d}t = 0, \boldsymbol{x}(0) = \boldsymbol{x}_{0}, \quad \boldsymbol{x}(t_{\mathrm{f}}) = \boldsymbol{x}_{t_{\mathrm{f}}} \quad (5.3.4)$

进行 Lengendre 变换可将其转化为正则形式,进而得到等价的

Hamilton 正则微分方程。令

$$\boldsymbol{\lambda} = \frac{\partial L}{\partial \boldsymbol{\dot{x}}} \tag{5.3.5}$$

$$H(\boldsymbol{x},\boldsymbol{\lambda}) = \boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - L(\boldsymbol{x}, \dot{\boldsymbol{x}})$$
 (5.3.6)

则有

$$\delta \int_{0}^{t_{\mathrm{f}}} \left[\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - H(\boldsymbol{x}, \boldsymbol{\lambda}) \right] \mathrm{d}t = 0 \qquad (5.3.7)$$

且根据

$$\dot{\mathbf{x}} = \frac{\partial H}{\partial \boldsymbol{\lambda}} \tag{5.3.8a}$$

$$\dot{\boldsymbol{\lambda}} = -\frac{\partial H}{\partial \boldsymbol{x}}$$
 (5. 3. 8b)

可得

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\boldsymbol{\lambda}} \end{bmatrix} = \begin{bmatrix} -K_{22}^{-1}K_{21} & K_{22}^{-1} \\ K_{11} - K_{12}K_{22}^{-1}K_{21} - \rho M & K_{12}K_{22}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \boldsymbol{\lambda} \end{bmatrix}$$
(5. 3. 9)

若令 $A = -K_{22}^{-1}K_{21}, BB^{T} = K_{22}^{-1}, L^{T}L = M, C^{T}C = K_{11} - K_{12}K_{22}^{-1}K_{21}$ 。则方程(5.3.9) 与方程(5.2.1) 完全一致,只需再将方程(5.2.1) 的边界条件也做相应的变换,微分方程(5.3.9) 的特征 值问题就与方程(5.2.1) 的特征值问题等价。

对 Sturm-Liouville 型微分方程特征值问题的研究是经典的 课题,也不乏计算特征值的数值方法。例如通过将微分方程离散化 为差分方程,即可利用许多有效的算法计算特征值。因为这里关心 的是一阶特征值的计算,可以采用特定形式的离散化方法。从变分 式(5.3.4)的离散化开始,将[0, t_f]等间距离散为 *K* 段,并令 $\eta = t_{k+1} - t_k (k = 0, 1, 2, \dots, K - 1)$,可得式(5.3.4)的离散形式

$$\delta \left\{ \sum_{k=0}^{K-1} L_k(\boldsymbol{x}_k, \boldsymbol{x}_{k+1}) \right\} = 0$$
 (5. 3. 10)

边界条件与式(5.3.4)中相同,且

 $L_k(\boldsymbol{x}_k, \boldsymbol{x}_{k+1}) = \boldsymbol{x}_k^{\mathrm{T}} \boldsymbol{K}_{aa} \boldsymbol{x}_k + \boldsymbol{x}_{k+1}^{\mathrm{T}} \boldsymbol{K}_{ba} \boldsymbol{x}_k + \boldsymbol{x}_k^{\mathrm{T}} \boldsymbol{K}_{ab} \boldsymbol{x}_{k+1} + \boldsymbol{x}_{k+1}^{\mathrm{T}} \boldsymbol{K}_{bb} \boldsymbol{x}_{k+1}$ (5.3.11)

上式中的系数矩阵 K_{aa} , $K_{ab} = K_{ba}^{T}$ 和 K_{bb} 由 K_{11} , K_{12} , K_{22} , η , ρ 确定。对 于线性定常系统及 η 给定的等距离散化, 可以认为系数矩阵仅是 ρ 的函数。由式 (5.3.10) 可得

$$\begin{bmatrix} \boldsymbol{K}_{aa} & \boldsymbol{K}_{ab} \\ \boldsymbol{K}_{ba} & \boldsymbol{K}_{bb} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{k} \\ \boldsymbol{x}_{k+1} \end{bmatrix} = \boldsymbol{0}$$
 (5. 3. 12)

利 用 式 (5.3.12) 中 的 系 数 矩 阵 K_{aa}, K_{ab}, K_{bb} , 根 据 Wittrick-Williams 特征值计数定理可以计算其一阶特征值到指定 的 精度,当然其他阶特征值也可同样计算。定义离散形式的 Lengendre 变换为

$$\boldsymbol{\lambda}_{k} = -\frac{\partial L_{k}}{\partial \boldsymbol{x}_{k}} = -(\boldsymbol{K}_{aa}\boldsymbol{x}_{k} + \boldsymbol{K}_{ab}\boldsymbol{x}_{k+1}) \qquad (5.3.13a)$$

$$\boldsymbol{\lambda}_{k+1} = \frac{\partial L_k}{\partial \boldsymbol{x}_{k+1}} = \boldsymbol{K}_{ba} \boldsymbol{x}_k + \boldsymbol{K}_{bb} \boldsymbol{x}_{k+1} \qquad (5.3.13b)$$

由此得

$$\boldsymbol{x}_{k+1} = -\boldsymbol{K}_{bb}^{-1}\boldsymbol{K}_{ba}\boldsymbol{x}_{k} + \boldsymbol{K}_{bb}^{-1}\boldsymbol{\lambda}_{k+1} \qquad (5.3.14a)$$

$$\boldsymbol{\lambda}_{k} = (-\boldsymbol{K}_{aa} + \boldsymbol{K}_{ab}\boldsymbol{K}_{bb}^{-1}\boldsymbol{K}_{ba})\boldsymbol{x}_{k} - \boldsymbol{K}_{ab}\boldsymbol{K}_{bb}^{-1}\boldsymbol{\lambda}_{k+1} \text{ (5. 3. 14b)}$$

若令

$$F = -K_{bb}^{-1}K_{ba}$$
 (5. 3. 15a)

$$G = K_{bb}^{-1}$$
(5.3.15b)

$$\boldsymbol{E} = \boldsymbol{K}_{aa} - \boldsymbol{K}_{ab} \boldsymbol{K}_{bb}^{-1} \boldsymbol{K}_{ba}$$
(5.3.15c)

则式(5.3.14) 与(5.3.1) 的形式一致。与式(5.3.12) 特征值的求 解类似,由上述差分方程的系数矩阵 *F*,*G*,*E* 也可计算特征值,但 需要利用适应于对偶变量体系的扩展 Wittrick-Williams 算法。

5.3.2 混合能矩阵合并公式及特征值计数公式

差分方程(5.3.1) 与离散形式的变分驻值问题

$$\delta \left\{ \sum_{k=0}^{K-1} \left[\boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{x}_{k+1} - \left(\boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{F} \boldsymbol{x}_{k} - \frac{1}{2} \boldsymbol{x}_{k}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{x}_{k} + \frac{1}{2} \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{G} \boldsymbol{\lambda}_{k+1} \right) \right] + \frac{1}{2} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{Q}_{0}^{-1} \boldsymbol{x}_{0} \right\}$$
(5. 3. 16)

是等价的。由式(5.3.16)可定义区段 (t_k, t_{k+1}) 的混合能

$$V(\boldsymbol{x}_{k},\boldsymbol{\lambda}_{k+1}) = \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{F} \boldsymbol{x}_{k} - \frac{1}{2} \boldsymbol{x}_{k}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{x}_{k} + \frac{1}{2} \boldsymbol{\lambda}_{k+1}^{\mathrm{T}} \boldsymbol{G} \boldsymbol{\lambda}_{k+1}$$
(5. 3. 17)

因为 $V(x_k, \lambda_{k+1})$ 具有能量的形式,系数矩阵F, G, E亦称为区段混 合能矩阵。显然差分方程的解 x_k, λ_k 逼近微分方程解 $x(t_k), \lambda(t_k)$ 的 精度取决于F, G, E的精度。对于线性定常系统,矩阵F, G, E 仅是 区间长度 η 的函数,可表示为 $F(\eta), G(\eta), E(\eta)$ 。区间长度为 η 时, 本章中用简化的形式,即F, G, E;对区间长度 $k\eta$,则记为 $F(k\eta),$ $G(k\eta), E(k\eta)$ 。当 $\eta \rightarrow 0$ 时

$$E \to \mathbf{0}, G \to \mathbf{0}, F \to I \tag{5.3.18}$$

由差分方程(5.3.1),可设

$$\mathbf{x}_{k+1} = \mathbf{F}(2\eta)\mathbf{x}_{k-1} + \mathbf{G}(2\eta)\mathbf{\lambda}_{k+1}$$
 (5. 3. 19a)

$$\boldsymbol{\lambda}_{k-1} = -\boldsymbol{E}(2\boldsymbol{\eta})\boldsymbol{x}_{k-1} + \boldsymbol{F}^{\mathrm{T}}(2\boldsymbol{\eta})\boldsymbol{\lambda}_{k+1} \qquad (5.3.19\mathrm{b})$$

将

$$\boldsymbol{x}_{k} = (\boldsymbol{I} + \boldsymbol{G}\boldsymbol{E})^{-1}(\boldsymbol{F}\boldsymbol{x}_{k-1} + \boldsymbol{G}\boldsymbol{F}^{\mathrm{T}}\boldsymbol{\lambda}_{k+1}) \qquad (5.\ 3.\ 20a)$$

 $\lambda_k = (I + EG)^{-1}(-EFx_{k-1} + F^{T}\lambda_{k+1})$ (5.3.20b) 代入式(5.3.1) 可得

$$\boldsymbol{x}_{k+1} = \boldsymbol{F}(\boldsymbol{I} + \boldsymbol{G}\boldsymbol{E})^{-1}\boldsymbol{F}\boldsymbol{x}_{k-1} + [\boldsymbol{G} + \boldsymbol{F}(\boldsymbol{I} + \boldsymbol{G}\boldsymbol{E})^{-1}\boldsymbol{G}\boldsymbol{F}^{\mathrm{T}}]\boldsymbol{\lambda}_{k+1}$$
(5. 3. 21a)

 $\boldsymbol{\lambda}_{k-1} = -\left[\boldsymbol{E} + \boldsymbol{F}^{\mathrm{T}}(\boldsymbol{I} + \boldsymbol{E}\boldsymbol{G})^{-1}\boldsymbol{E}\boldsymbol{F}\boldsymbol{x}_{k-1}\right] + \boldsymbol{F}^{\mathrm{T}}(\boldsymbol{I} + \boldsymbol{E}\boldsymbol{G})^{-1}\boldsymbol{F}^{\mathrm{T}}\boldsymbol{\lambda}_{k+1}$ (5. 3. 21b)

与式(5.3.19)比较可知

$$G(2\eta) = G + F(G^{-1} + E)^{-1}F^{\mathrm{T}}$$
 (5.3.22a)

 $E(2\eta) = E + F^{T}(E^{-1} + G)^{-1}F \qquad (5. 3. 22b)$

 $F(2\eta) = F(I + GE)^{-1}F$ (5. 3. 22c)

同理可证下列公式

 $\boldsymbol{G}(i\boldsymbol{\eta}+j\boldsymbol{\eta}) = \boldsymbol{G}(j\boldsymbol{\eta}) + \boldsymbol{F}(j\boldsymbol{\eta})[\boldsymbol{G}^{-1}(i\boldsymbol{\eta}) + \boldsymbol{E}(j\boldsymbol{\eta})]^{-1}\boldsymbol{F}^{\mathrm{T}}(j\boldsymbol{\eta})$ (5. 3. 23a)

 $\boldsymbol{E}(i\boldsymbol{\eta}+j\boldsymbol{\eta}) = \boldsymbol{E}(i\boldsymbol{\eta}) + \boldsymbol{F}^{\mathrm{T}}(i\boldsymbol{\eta}) [\boldsymbol{E}^{-1}(j\boldsymbol{\eta}) + \boldsymbol{G}(i\boldsymbol{\eta})]^{-1} \boldsymbol{F}(i\boldsymbol{\eta})$ (5. 3. 23b)

 $\boldsymbol{F}(i\boldsymbol{\eta}+j\boldsymbol{\eta})=\boldsymbol{F}(j\boldsymbol{\eta})[\boldsymbol{I}+\boldsymbol{G}(i\boldsymbol{\eta})\boldsymbol{E}(j\boldsymbol{\eta})]^{-1}\boldsymbol{F}(i\boldsymbol{\eta})$

(5.3.23c)

用图 5.1 中区段1和2分别代表式(5.3.23) 中不同长度区段,则上述公式可以简洁地表示为

 $G_{c} = G_{2} + F_{2}(G_{1}^{-1} + E_{2})^{-1}F_{2}^{T}$ (5. 3. 24a)

$$\boldsymbol{E}_{c} = \boldsymbol{E}_{1} + \boldsymbol{F}_{1}^{\mathrm{T}} (\boldsymbol{E}_{2}^{-1} + \boldsymbol{G}_{1})^{-1} \boldsymbol{F}_{1} \qquad (5. \ 3. \ 24 \mathrm{b})$$

 $\boldsymbol{F}_{c} = \boldsymbol{F}_{2}(\boldsymbol{I} + \boldsymbol{G}_{1}\boldsymbol{E}_{2})^{-1}\boldsymbol{F}_{1} \qquad (5. \ 3. \ 24c)$

并称之为区段合并公式。

如图 5.1 所示,区段 1 的特征值计数定义为:对给定 γ_{\pm}^{-2} ,在 x_a = 0, λ_b = 0 的条件下,区段 1 特征值小于 γ_{\pm}^{-2} 的数目,并用 J_{R1} 表 示。 J_{R1} 是 η 及 γ_{\pm}^{-2} 的函数,可写成 $J_{R1}(\gamma_{\pm}^{-2},\eta)$,为简单起见用 $J_{R1}(\gamma_{\pm}^{-2})$ 表示,区段 2 和 c 的特征值计数分别记作 $J_{R2}(\gamma_{\pm}^{-2})$, $J_{Rc}(\gamma_{\pm}^{-2})$ 。各特征值计数之间的关系为^[7]

 $J_{Rc}(\gamma_{\#}^{-2}) = J_{R1}(\gamma_{\#}^{-2}) + J_{R2}(\gamma_{\#}^{-2}) - s\{G_1\} + s\{G_1^{-1} + E_2\}$ (5. 3. 25)

5.3.3 混合能矩阵的微分方程

设 t_k , x_k , λ_k 不变, t_{k+1} 增加微量 dt, x_{k+1} , λ_{k+1} 及 F, G, E 当然有 相应的变化。利用差分方程(5.3.1) 及微分方程(5.2.1a) 可以导 出这些矩阵满足的微分方程。将式(5.3.1) 各项求导得

$$\frac{\mathrm{d}\boldsymbol{x}_{k+1}}{\mathrm{d}t} = \frac{\mathrm{d}\boldsymbol{F}}{\mathrm{d}t}\boldsymbol{x}_{k} + \frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}t}\boldsymbol{\lambda}_{k+1} + \boldsymbol{G}\frac{\mathrm{d}\boldsymbol{\lambda}_{k+1}}{\mathrm{d}t} \qquad (5.3.26a)$$

$$\mathbf{0} = -\frac{\mathrm{d}\boldsymbol{E}}{\mathrm{d}t}\boldsymbol{x}_{k} + \frac{\mathrm{d}\boldsymbol{F}^{\mathrm{T}}}{\mathrm{d}t}\boldsymbol{\lambda}_{k+1} + \boldsymbol{F}^{\mathrm{T}}\frac{\mathrm{d}\boldsymbol{\lambda}_{k+1}}{\mathrm{d}t} \qquad (5. \ 3. \ 26\mathrm{b})$$

将方程(5.2.1a) 在 $t = t_{k+1}$ 处的等式关系代入上式得

$$\frac{\mathrm{d}\boldsymbol{F}}{\mathrm{d}t}\boldsymbol{x}_{k} + \left(\frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}t} - \boldsymbol{G}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}}\right) - \boldsymbol{\lambda}_{k+1} \begin{bmatrix} \boldsymbol{A} - \boldsymbol{G}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L}) \end{bmatrix} \boldsymbol{x}_{k+1} = \boldsymbol{0} \qquad (5. \ 3. \ 27a)$$
$$- \frac{\mathrm{d}\boldsymbol{E}}{\mathrm{d}t}\boldsymbol{x}_{k} + \left(\frac{\mathrm{d}\boldsymbol{F}^{\mathrm{T}}}{\mathrm{d}t} - \boldsymbol{F}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}\right) \boldsymbol{\lambda}_{k+1} + \boldsymbol{F}^{\mathrm{T}}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L}) \boldsymbol{x}_{k+1} = \boldsymbol{0} \qquad (5. \ 3. \ 27b)$$

再将差分方程(5.3.1a)代入上式消去变量 x_{k+1} 后得

$$\left\{\frac{\mathrm{d}\boldsymbol{F}}{\mathrm{d}t} - \left[\boldsymbol{A} - \boldsymbol{G}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\right]\boldsymbol{F}\right\}\boldsymbol{x}_{k} + \left\{\frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}t} - \boldsymbol{A}\boldsymbol{G} - \boldsymbol{G}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} + \boldsymbol{G}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{G}\right\}\boldsymbol{\lambda}_{k+1} = \boldsymbol{0}$$
(5. 3. 28a)

$$\left\{-\frac{\mathrm{d}\boldsymbol{E}}{\mathrm{d}t}+\boldsymbol{F}^{\mathrm{T}}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C}-\boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{F}\right\}\boldsymbol{x}_{k}+\\\left\{\frac{\mathrm{d}\boldsymbol{F}^{\mathrm{T}}}{\mathrm{d}t}-\boldsymbol{F}^{\mathrm{T}}[\boldsymbol{A}^{\mathrm{T}}-(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C}-\boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})^{\mathrm{T}}\boldsymbol{G}^{\mathrm{T}}]\right\}\boldsymbol{\lambda}_{k+1}=\boldsymbol{0}$$
(5. 3. 28b)

由于 x_k 及 λ_{k+1} 的任意性,必有下列微分方程成立

$$\frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}t} = \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} + \boldsymbol{A}\boldsymbol{G} + \boldsymbol{G}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{G}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{G}$$

(5.3.29a)

$$\frac{\mathrm{d}\boldsymbol{E}}{\mathrm{d}t} = \boldsymbol{F}^{\mathrm{T}}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{F}$$
(5.3.29b)

$$\frac{\mathrm{d}\boldsymbol{F}}{\mathrm{d}t} = [\boldsymbol{A} - \boldsymbol{G}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})]\boldsymbol{F} \qquad (5.3.29\mathrm{c})$$

式(5.3.18) 是这些方程的初始条件。按照线性系统理论,由上述 方程可知各混合能矩阵(即差分方程(5.3.1) 的系数矩阵) 的意 义:G是Riccati 微分方程的解,F是 $A - G(C^{T}C - \gamma^{-2}L^{T}L)$ 的状态 转移矩阵,而 $E \in [A - G(C^{T}C - \gamma^{-2}L^{T}L),C_{0}^{T}]$ 的可观性矩阵,其 中 $C_{0}^{T}C_{0} = C^{T}C - \gamma^{-2}L^{T}L$ 。通过微分方程的积分可以计算这些系数 矩阵,而这些方程的积分亦可根据式(5.3.24) 来进行。这是精细 积分算法所要解决的问题。

5.3.4 混合能矩阵计算

差分方程(5.3.1)解的精度由其系数矩阵F,G,E决定。另外, 由上节介绍的特征值计数公式(5.3.25)可知,特征值计数的精度 也依赖于F,G,E的精度。按常规的微分方程离散化方法计算这些 差分方程的系数不能满足这里的需要,况且在上文中已经给出了 系数矩阵满足的微分方程(5.3.29)以及合并关系式(5.3.24),所 以本节将利用精细积分法计算区段长度为 η 的系数矩阵(混合能 矩阵) $F(\eta),G(\eta),E(\eta)$ 。实质上这一步骤是将计算矩阵 $F(k\eta)$, $G(k\eta),E(k\eta)$ 的公式(5.3.24)应用于区段 η ,如图 5.2所示。

根据 2^{N} 类算法的特点及精细积分法的要求,一般取 N = 20, 将 η 等分为

 $\tau = \eta/2^N \approx \eta \cdot 10^{-6} \tag{5.3.30}$

需要指出的是,精细积分法仅在这一阶段对区段 $\eta = t_1 - t_0$ 进行 了进一步的细分,并没有对整个区间 $[0,t_f]$ 内其他区段进行同样 的 细分。由于 2^N 类算法的特点,这样的区间细分所增加的计算量

图 5.2 区间等距离散及区段的细化

相对于全部计算量并不占多大比例。

由于 τ 非常小,可以对区段矩阵 $F(\tau)$, $G(\tau)$, $E(\tau)$ 作 Taylor 级数展开。因为更高阶项对计算结果没有影响,因此这里忽略高于 4 阶的项。则有

 $E(\tau) \approx e_1 \tau + e_2 \tau^2 + e_3 \tau^3 + e_4 \tau^4$ (5.3.31a)

$$\boldsymbol{G}(\tau) \approx \boldsymbol{g}_1 \tau + \boldsymbol{g}_2 \tau^2 + \boldsymbol{g}_3 \tau^3 + \boldsymbol{g}_4 \tau^4 \qquad (5. \ 3. \ 31 b)$$

$$F(\tau) \approx I + f_1 \tau + f_2 \tau^2 + f_3 \tau^3 + f_4 \tau^4 = I + F'(\tau)$$
(5.3.31c)

将式(5.3.31a)~(5.3.31c)分别代入微分方程(5.3.29a)~ (5.3.29c),比较同幂次项的系数有

$$e_{1} = C^{T}C - \gamma^{-2}L^{T}L$$

$$e_{2} = (f_{1}^{T}e_{1} + e_{1}f_{1})/2$$

$$e_{3} = (f_{2}^{T}e_{1} + e_{1}f_{2} + f_{1}^{T}e_{1}f_{1})/3$$

$$e_{4} = (f_{3}^{T}e_{1} + e_{1}f_{3} + f_{2}^{T}e_{1}f_{1} + f_{1}^{T}e_{1}f_{2})/4 \quad (5. \ 3. \ 32a)$$

$$g_{1} = BB^{T}$$

$$g_{2} = (Ag_{1} + g_{1}A^{T})/2$$

$$g_{3} = (Ag_{2} + g_{2}A^{T} - g_{1}e_{1}g_{1})/3$$

$$g_{4} = (Ag_{2} + g_{2}A^{T} - g_{2}e_{1}g_{1} - g_{1}e_{1}g_{2})/4 \quad (5. \ 3. \ 32b)$$

$$f_{1} = A$$

$$f_{2} = (Af_{1} - g_{1}e_{1})/2$$

 $f_3 = (Af_2 - g_2e_1 - g_1e_1f_1)/3$

 $f_4 = (Af_3 - g_3e_1 - g_2e_1f_1 - g_1e_1f_2)/4$ (5.3.32c) 为避免计算精度的丧失,在此计算阶段,合并公式(5.3.24c)由下 式代替

$$\mathbf{F}'_{c} = \left(\mathbf{F}' - \frac{1}{2}\mathbf{G}\mathbf{E}\right)(\mathbf{I} + \mathbf{G}\mathbf{E})^{-1} + (\mathbf{I} + \mathbf{G}\mathbf{E})^{-1}\left(\mathbf{F}' - \frac{1}{2}\mathbf{G}\mathbf{E}\right) + \mathbf{F}'(\mathbf{I} + \mathbf{G}\mathbf{E})^{-1}\mathbf{F}'$$
(5. 3. 24c')

这是精细积分算法的关键步骤之一。 $F(\tau)$, $G(\tau)$, $E(\tau)$ 当然是 γ^{-2} 的函数,因此由 $F(\tau)$, $G(\tau)$, $E(\tau)$ 通过式 (5.3.24)计算 $E(\tau)$, $G(\tau)$, $F(\tau)$ 的过程中也需要特征值计数,以保证此区段的一阶特征值大于给定值 γ_{\pm}^{-2} 。其实质是要求在区域[0, η]上,Hamilton 微

分方程(5.2.1)的一阶特征值大于 $\gamma_{\#}^{-2}$,也就是 $\gamma_{\#} > \gamma_{opt}$ 。

5.4 最优 H_{∞} 范数计算

Hamilton 微分方程(5.2.1) 离散化之后,其边值问题特征值 的计算就可以利用差分方程(5.3.1) 的系数,由公式(5.3.24) 结 合扩展形式的 Wittrick-Williams 特征值计数公式(5.3.25) 进行。 当最终计算到 $E(K\eta)$, $G(K\eta)$, $F(K\eta)$ 时,对差分方程整个定义区 间 的特征值计数也同时完成,从而可以判定该边值问题的特征值 小于给定值 γ_{\pm}^2 的个数。对于求一阶特征值来讲,若特征值计数 $J_R(\gamma_{\pm}^2) = 0$,则表示 γ_{\pm}^2 小于一阶特征值,即 $\gamma_{\pm}^2 < \gamma_{opt}^2$,可以增大 γ_{\pm}^2 重新计算以更接近 γ_{opt}^{-2} ;若 $J_R(\gamma_{\pm}^2) \neq 0$,则应减小 γ_{\pm}^2 。当然,由 于特征值的计数始终在计算过程中进行,所以可以在算法中设定, 使得只要出现 $J_R(\gamma_{\pm}^2) \neq 0$ 就修改 γ_{\pm}^2 重新计算,以提高效率,这 也是扩展的 Wittrick-Williams 特征值计数公式的特点之一。 由 $E(\eta)$, $G(\eta)$, $F(\eta)$ 可以递推计算长度为 2η , 3η ,..., $k\eta$ 的区 段矩阵 $E(k\eta)$, $G(k\eta)$, $F(k\eta)$ 。这样计算的 $E(k\eta)$ 是 Riccati 微分方 程(5.1.6) 在边界条件为 0 时的解。方程(5.1.6) 在边界条件为 Q_0 时的解 $Q(k\eta)$ 为

 $\boldsymbol{Q}(k\eta) = \boldsymbol{G}(k\eta) + \boldsymbol{F}(k\eta)(\boldsymbol{Q}_0^{-1} + \boldsymbol{E}(k\eta))^{-1}\boldsymbol{F}^{\mathrm{T}}(k\eta)$

(5.4.1)

这个等式在许多研究 Riccati 微分方程的文献中出现,也可以用结构力学中的方法证明^[9]。

5.4.1 算法描述

最优 H_∞ 范数计算的步骤如下:

A: 计算差分方程(5.3.1)的系数(即 η 区段混合能矩 阵) $E(\eta)$, $G(\eta)$, $F(\eta)$ 的步骤为

- Step 1 给定 $\gamma_{\#}^{-2}$
- Step 2 由式(5.3.31a) ~ (5.3.31c) 计算 $E(\tau)$, $G(\tau)$, $F'(\tau)$ 作为 E_c , G_c , F'_c , 且 $J_R = 0$
- **Step 3** for (i = 0; i < N; i + +) {

 $\{E_1 = E_2 = E_c; G_1 = G_2 = G_c; F'_1 = F'_2 = F'_c\}$ {按式(5.3.25) 计算 J_{Rc} } (若 $J_{Rc} > 0, 则减小 \gamma_{\#}^{-2}$ 并从 Step1 重新开始) {按式(5.3.24a), (5.3.24b), (5.3.24c') 计算新 的 E_c, G_c, F'_c }

Step 4 $F_c = I + F'_c$

B:计算最优 H. 范数的步骤为

Step 1 $\{E_1 = 0; G_1 = Q_0; F_1 = I; J_{R_1} = 0; E_2 = E_c; G_2 = G_c; F_2 = F_c; J_{R_2} = 0\}$

Step 2 for (i = 0; i < K; i + +) {

{按式(5.3.25) 计算 J_{Re} ,若 $J_{Re} > 0$,则减小 $\gamma_{\#}^{-2}$

并从 Step 1 重新开始}

{按式(5.3.24) 计算新的 E_c , G_c , F_c }

Step 3 if
$$(J_{Rc} > 0)$$

 $\{\gamma_{\pm}^{-2} \in \gamma_{opt}^{-2}$ 的上界(upperbound),减小 γ_{\pm}^{-2} 再从 Step 1开始}

else

 $\{\gamma_{\pm}^{-2} \in \gamma_{opt}^{-2}$ 的下界(lowerbound),增大 γ_{\pm}^{-2} 再从Step 1 开始;

if (upperbound-lowerbound) $> \epsilon(\epsilon$ 是指定的小 正实数)

```
{增大 \gamma_{\#}^{-2} 再从 Step 1 开始}
```

else

{break}

}

5.4.2 算例

算例 1:

算例1是一个二维系统,参数如下

 $\boldsymbol{A} = \begin{bmatrix} 0 & 1 \\ 39.4 & 3.8 \end{bmatrix} \quad \boldsymbol{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \boldsymbol{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad \boldsymbol{L} = \begin{bmatrix} 0 & 0.2 \end{bmatrix}$ $\boldsymbol{D} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \boldsymbol{Q}_0 = \begin{bmatrix} 0.01 & 0 \\ 0 & 0.01 \end{bmatrix}$

表 5-1 给出了最优 H_{∞} 范数随区间长度变化而变化的结果,区间长度的增加使得 γ_{opt} 趋于一个定值,这个值也是无限区间上 H_{∞} 滤波器的最优 H_{∞} 范数。表 5-2 给出了 $Q_0 = I_2$ 时最优 H_{∞} 范数随 区间长度变化的结果,表 5-3 给出了 $Q_0 = 10 \times I_2$ 时系统最优 H_{∞} 范数随区间长度变化的结果。事实上,计算无限区间的最优 H_{∞} 范数时,将这里的算法稍作改动效率会更高,具体方法可参考第二章

和第三章的内容及文献 6,7,这里不作更多的讨论。

表 5-1

算例 1 的 $\gamma_{\text{opt}}(Q_0 = 0.01 \times I_2)$

tf	0.25	0.50	0.75	1.00	2.00	4.00
$\gamma_{ m opt}$	0.12931	0.94854	1.66552	1.69144	1.69184	1.69184

表 5-2

算例 1 的 $\gamma_{opt}(Q_0 = I_2)$

$t_{ m f}$	0.25	0.50	0.75	1.00	2.00	4.00
$\gamma_{ m opt}$	0.84834	1.64688	1.69060	1.69180	1.69183	1.69184

表 5-3

算例 1 的 $\gamma_{opt}(Q_0 = 10 \times I_2)$

$t_{ m f}$	0.25	0.50	0.75	1.00	2.00	4.00
$\gamma_{ m opt}$	1.24727	1.67313	1.69167	1.69191	1.69191	1.69191

图 5.3 至图 5.6 给出了 $\gamma = \gamma_{opt}$ 时,系统在不同时间区间内 Riccati 方程解的变化情况,因为参数 γ 取的是最优值,Riccati 方程 解矩阵的元素趋于无穷大。

图 5.3 算例 1 中 Riccati 方程的解($\gamma = \gamma_{opt}, t_f = 0.25$)

图 5.4 算例 1 中 Riccati 方程的解($\gamma = \gamma_{opt}, t_f = 0.5$)

图 5.5 算例 1 中 Riccati 方程的解($\gamma = \gamma_{opt}, t_f = 0.75$)

图 5.6 算例 1 中 Riccati 方程的解($\gamma = \gamma_{opt}, t_f = 1$)

图 5.7 至图 5.9 则给出了 $\gamma^{-2} = 0.3 \times \gamma_{opt}^{-2}$ 时不同时间区间内 Riccati 方程解的变化情况,随着时间的增加,该解趋于一个定值。

算例 2:

算例2取自文献10,参数如下:

$$A = \begin{bmatrix} -1 & & \\ & -2 & \\ & & -3 \end{bmatrix}$$
$$B = \begin{bmatrix} 25 & \\ 25 & \\ -25 \end{bmatrix}$$
$$C = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \quad L = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
$$D = \begin{bmatrix} 1 & \\ & 1 \end{bmatrix}$$

表 5-4 给出了 $Q_0 = 0$ 时最优 H_{∞} 范数随区间长度变化的结果,随着 区间长度的增加, γ_{opt} 趋于一个定值,这个值与文献 10 的计算结果 是一致的。表 5-5 则给出了 $Q_0 = 0.1 \times I_3$ 时的计算结果。

表 5-4

算例 2 的 $\gamma_{opt}(Q_0 = 0)$

t_{f}	1	2	3	5	10	15
$\gamma_{ m opt}$	9.22589	9.37009	9.37453	9.37475	9.37475	9.37475

表 5-5

算例 2 的 $\gamma_{opt}(Q_0 = 0.1 \times I_3)$

$t_{\rm f}$	1	2	3	5	10	15
$\gamma_{ m opt}$	9.34095	9.37398	9.37467	9.37475	9.37475	9.37475

图 5.10 至图 5.14 给出了 $\gamma^{-2} = 0.5 \times \gamma_{opt}^{-2}$ 时,系统在不同时 间区间内 Riccati 方程解的变化情况。

图 5.11 算例 2中 Riccati 方程的解 ($\gamma^{-2} = 0.5 \times \gamma_{opt}^{-2}, t_f = 2$)

图 5.13 算例 2 中 Riccati 方程的解 ($\gamma^{-2} = 0.5 \times \gamma_{opt}^{-2}, t_f = 5$)

图 5.14 算例 2中 Riccati 方程的解 ($\gamma^{-2} = 0.5 \times \gamma_{opt}^{-2}, t_f = 10$)

图 5.15 至图 5.19 给出了 $\gamma^{-2} = 0.1 \times \gamma_{opt}^{-2}$ 时,系统在不同时间区间内 Riccati 方程解的变化情况。

 $(\gamma^{-2} = 0.1 \times \gamma^{-2}_{\rm opt}, t_{\rm f} = 1)$

算例 3:

算例 3 是一个 7 维系统,参数如下

	4.04	-7.90	6.29	-20.33	-11.85	-37.20	- 9.83
	3.84	- 5.57	2.97	- 16.00	— 5 . 24	-12.06	4.87
	0.0	0.0	6.36	— 4 . 69	3.61	-1.64	- 6.16
A =	0.0	0.0	0.31	-1.20	— 0.03	— 2.35	— 0.97
	0.0	0.0	0.0	0.0	— 0 . 42	-3.12	- 0.74
	0.0	0.0	0.0	0.0	0.01	8.93	- 0.04
	L0.0	0.0	0.0	0.0	0.0	2.0	- 4.87_
$B^{\mathrm{T}} =$	[-70.]	94 — 75 .	07 —	14.55 - 7.	34 3 . 12	4.04	- 3.1
	-37.	88 21.0	1 —	18.35 - 9.	60 - 14.1	8 - 1.98	- 4.2
C T –	_	9.13	24.2	22 1.67	-55.41	-6.43	- 7.63 J
c –	$\lfloor -1 $.	27 6.35	— 4 .	75 3.03	-3.26	-5.21	2.18
	L = [-	0.10 -	- 0.40	0.26 0.	39 — 0. 2	21 0.45	-0.67]

表 5-6 给出了 $Q_0 = 0.1 \times I_7$ 时 γ_{opt}^{-2} 随区间长度变化的结果, 随着区间长度的增加, γ_{opt}^{-2} 趋于一个定值。表 5-7 和表 5-8 分别给出 了 $Q_0 = I_7$ 和 $Q_0 = 10 \times I_7$ 时系统的 γ_{opt}^{-2} 随区间长度变化的结果。 注意这里给出的不是 γ_{opt}^{-2} ,所以数据随区间长度的变化趋势不同。

表	5-	6
2	•	- U

算例 3 的 $\gamma_{\text{opt}}^{-2}(Q_0 = 0.1 \times I_7)$

$t_{ m f}$	1	3	5	15
$\gamma_{ m opt}^{-2}$	0.311652	0.144931	0.140925	0.030391
t_{f}	20	25	30	50
$\gamma_{ m opt}^{-2}$	0.0288361	0.0287575	0.0287535	0.0287533

表 5-7

算例 3 的 $\gamma_{opt}^{-2}(Q_0 = I_7)$

$t_{ m f}$	1	3	5	15
$\gamma_{ m opt}^{-2}$	0.169983	0.129470	0.0865784	0.0289278
tf	20	25	30	50
$\gamma_{ m opt}^{-2}$	0.0287621	0.0287537	0.0287533	0.0287533

表 5-8

算例 3 的 $\gamma_{\text{opt}}^{-2}(Q_0 = 10 \times I_7)$

$t_{ m f}$	1	3	5	15
$\gamma_{ m opt}^{-2}$	0.111533	0.0530400	0.0357076	0.0287705
$t_{ m f}$	20	25	30	50
$\gamma_{ m opt}^{-2}$	0.0287542	0.0287533	0.0287533	0.0297533

至此,本章在研究最优 H_{∞} 范数 γ_{opt} 、Riccati 微分方程解的存 在条件、Hamilton 微分方程边值问题特征值之间关系的基础上, 介绍了计算最优 H_{∞} 范数的特征值算法。求 Hamilton 微分方程特 征 值问题的数值解需要将微分方程定义区间离散化,上文也介绍 了此类方程与 Sturm-Liouville 型微分方程的关系及将其离散化 为差分方程的过程。差分方程中的系数矩阵(混合能矩阵)不仅是 特征值计算中的基本数据,而且具有特定的意义。

5.5 Riccati 微分方程解的有限逃逸现象

本节基于前面介绍的理论与方法研究 H_{∞} -Riccati 微分方程 解的有限逃逸现象,在有限时间滤波问题中,Riccati 微分方程解 的存在性由系统的 H_{∞} 诱导范数决定,最优范数 γ_{opt} 是含有非定号 二次项的 H_{∞} -Riccati 微分方程出现有限逃逸现象的临界参数。事 实上,对 H_{2} 滤波与控制中定号 Riccati 微分方程的研究也是一个 重要的内容,文献 11、文献 12 介绍了其有限逃逸现象(finite escape phenomena)。同样,由于含有非定号二次项的 H_{∞} -Riccati 微分方程在 H_{∞} 滤波与控制中的关键作用,对其有限逃逸等瞬态 性质的研究也具有重要意义。文献 13 给出了几个判定解的有界性 和 收敛性的充分条件,这些条件可以保证微分方程的解在初值小 于某个上界时的收敛性。

当其他条件一定时, H_{∞} -Riccati 微分方程解的存在性由参数

γ决定。对于足够大的 γ , H_{∞} -Riccati 微分方程总存在一个解;当 γ 从大于 γ_{opt} 逐渐趋近于滤波器的最优 H_{∞} 范数 γ_{opt} 时,方程的解矩 阵在终端时刻也将趋于无穷大;而当 $\gamma = \gamma_{opt}$ 时,方程的解存在有 限逃逸时刻。基于 Riccati 微分方程的解与 Hamilton 微分方程共轭 点之间的关系,5.2 节和 5.3 节中建立了 γ_{opt}^{-2} 与 Hamilton 微分系统 特征值之间的对应关系,并利用计算 Hamilton 微分系统特征值的 方法来计算 γ_{opt}^{-2} 。

5.5.1 有限逃逸条件

考虑线性系统

$$\dot{x} = Ax + Bw, x(0) = x_0$$
 (5.5.1a)

$$\mathbf{y} = C\mathbf{x} + \mathbf{v} \tag{5.5.1b}$$

$$z = Lx \tag{5. 5. 1c}$$

 H_{∞} 滤波问题解的存在性由 Riccati 微分方程(5.5.2) 解的存在性 决定 Riccati 微分方程

 $\dot{\boldsymbol{Q}} = \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} + \boldsymbol{A}\boldsymbol{Q} + \boldsymbol{Q}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{Q}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{Q}, \boldsymbol{Q}(0) = \boldsymbol{Q}_{0}$ (5.5.2)

定义在区间 $[0,t_f]$ 上,其解可以由 Hamilton 微分方程

$$\begin{bmatrix} \dot{x} \\ \dot{\lambda} \end{bmatrix} = \begin{bmatrix} A & BB^{\mathrm{T}} \\ C^{\mathrm{T}}C - \gamma^{-2}L^{\mathrm{T}}L & -A^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} \qquad (5.5.3a)$$

$$\boldsymbol{x}(0) = \boldsymbol{Q}_0 \boldsymbol{\lambda}(0), \boldsymbol{\lambda}(t_{\rm f}) = 0 \qquad (5.5.3b)$$

的状态转移矩阵 $\phi(0,t)$ 表示,即对于

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\Phi}(0,t) = \boldsymbol{H}\boldsymbol{\Phi}(0,t), \quad \boldsymbol{\Phi}(0,0) = \boldsymbol{I} \qquad (5.5.4)$$

有

$$\begin{bmatrix} \boldsymbol{x}(t) \\ \boldsymbol{\lambda}(t) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varphi}_{11}(0,t) & \boldsymbol{\varphi}_{12}(0,t) \\ \boldsymbol{\varphi}_{21}(0,t) & \boldsymbol{\varphi}_{22}(0,t) \end{bmatrix} \begin{bmatrix} \boldsymbol{x}(0) \\ \boldsymbol{\lambda}(0) \end{bmatrix}$$
(5.5.5)

其中

$$\boldsymbol{H} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} \\ \boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L} & -\boldsymbol{A}^{\mathrm{T}} \end{bmatrix}$$
(5.5.6)

并且

 $\boldsymbol{Q}(t) = \begin{bmatrix} \boldsymbol{\Phi}_{11}(0,t)\boldsymbol{Q}_0 + \boldsymbol{\Phi}_{12}(0,t) \end{bmatrix} \begin{bmatrix} \boldsymbol{\Phi}_{21}(0,t)\boldsymbol{Q}_0 + \boldsymbol{\Phi}_{22}(0,t) \end{bmatrix}^{-1}$ (5.5.7)

根 据 定 理 5.4, 边 值 问 题 (5.5.3) 存 在 可 数 无 穷 多 个 特 征 值 $\gamma_k^{-2}(\gamma_1^{-2} \leqslant \gamma_2^{-2} \leqslant \cdots)$ 及 相 应 的 正 交 特 征 函 数 (ϕ_1, Ψ_1), (ϕ_2, Ψ_2),...,且

$$\langle \boldsymbol{\phi}_i, \boldsymbol{\phi}_j \rangle = \int_0^{t_{\rm f}} \boldsymbol{\phi}_i^{\rm T}(t) \boldsymbol{L}^{\rm T} \boldsymbol{L} \boldsymbol{\phi}_j(t) \mathrm{d}t = \delta_{ij}$$
 (5.5.8)

另外有

 $\gamma_{m+1}^{-2} = \min\{R(\boldsymbol{x},\boldsymbol{\lambda}) | \boldsymbol{x} \neq \boldsymbol{0}, \boldsymbol{x} \perp \boldsymbol{\phi}_{1}, \cdots, \boldsymbol{\phi}_{m}\} \quad (5.5.9)$ 其中 m = 0,1,2,..., 而 x \prod \phi_{i}(i = 1,2,...,m) 是指\langle x, \phi_{i} \rangle = $\int_{0}^{t_{i}} \boldsymbol{x}^{\mathrm{T}}(t) \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{\phi}_{i}(t) \mathrm{d}t = 0_{\circ} R(\boldsymbol{x},\boldsymbol{\lambda}) \text{ 的定义为}$

$$R(\boldsymbol{x},\boldsymbol{\lambda}) = \frac{\boldsymbol{\Pi}_1}{\boldsymbol{\Pi}_2} \tag{5.5.10}$$

其中

$$\Pi_{1} = \int_{0}^{t_{\mathrm{f}}} (\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x} - \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\lambda}) \mathrm{d}t + \frac{1}{2} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{Q}_{0}^{-1} \boldsymbol{x}_{0}$$
(5. 5. 11a)

$$\boldsymbol{\Pi}_{2} = \int_{0}^{t_{\mathrm{f}}} \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{x} \mathrm{d} t \qquad (5.5.11\mathrm{b})$$

当 γ^{-2} 是其特征值时,边值问题(5.5.3)存在非平凡解。边界 条件 $x(0) = Q_0\lambda(0)$ 及 $\lambda(t_i) = 0$ 又表明0和 t_i 是此边值问题的共 轭点,所以 $\varphi_{21}(0,t_i)Q_0 + \varphi_{22}(0,t_i)$ 必定是奇异矩阵,因此其逆矩 阵不存在,Riccati 微分方程的解在 t_i 时刻为无穷大,出现有限逃逸 现象。因为各阶特征值满足 $\gamma_1^{-2} \leq \gamma_2^{-2} \leq \cdots \gamma_m^{-2}$,所以 γ_1 是使两端边 值问题存在非平凡解的 γ 值的上界,也是使 Riccati 微分方程在 t_i 时刻出现有限逃逸现象的 γ 值的上界, 即 $\gamma_1 = \gamma_{opt}, \gamma_{opt}$ 是判定 H_{∞} -Riccati 微分方程是否存在有限逃逸现象的临界值。另外,按照 结构力学与最优控制的模拟理论,这里的 H_{∞} -Riccati 微分方程的 解矩阵对应子结构链的动柔度矩阵^[7,9],而子结构链的动柔度矩阵 是随结构的振动频率变化的,当振动频率为结构的固有频率时,其 右端的动柔度矩阵也趋向于无穷大,实质上就是 H_{∞} -Riccati 微分 方程解的有限逃逸现象。

5.5.2 算例

本节中将首先用精细积分结合扩展的 Wittrick-Williams 算 法计算 γ_{opt}^{-2} ,而用改进的 Davison-Maki 算法^[14] 求解给定 γ^{-2} 时的 H_{∞} -Riccati 微分方程。按照文献 13 中定理 4 的第一部分也可以计 算 H_{∞} -Riccati 方程在无限区间(0, ∞)的临界参数 γ_{opt}^{-2} ,即当且仅 当

$$\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \frac{1}{\boldsymbol{\gamma}^{2}}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L} \geqslant 0$$

时,方程(5.5.2)的解在区间(0,∞)不会发生有限逃逸现象。 算例 1:

算例 1 取自文献 13,系统参数为 $A = -1, C = 1, B = \sqrt{3/2}$, $L = \sqrt{5}$ 。按照上述条件, $\gamma^{-2} \leq 0.2$ 时,方程(5.5.2)的解在区间 (0,∞)不会发生有限逃逸现象。按照本节的判定条件和算法,同 样可以计算出 γ_{opt}^{-2} 的值为 0.2。对于有限区间,则无法按照文献 13 中的定理来判断并计算 γ_{opt}^{-2} 。本节的方法则可以对任意区间长度 及 任 意 初 始 值 计 算 γ_{opt}^{-2} 。设 $t_f = 5, Q_0 = 10$,可以 计 算 出 使 H_{∞} -Riccati 微分方程的解在区间末端趋于无穷大的临界值 $\gamma_{opt}^{-2} =$ 0.2370063215。如图 5.20 中所示,当取 $\gamma^{-2} = \gamma_{opt}^{-2}$ 时, H_{∞} -Riccati 微 分 方 程 的 解 在 t = 5 处 趋 向 于 无 穷 大。另 外,当 $\gamma^{-2} >$ 0.2370063215 时,方程的解在 t < 5 的某点趋向于无穷大。如图 5.21 中所 示。注意图 5.20 至图 5.23 的纵坐标均为以 10 为底的对数坐标,这 样可以更清楚地表示解的有限逃逸现象。

图 5.21 一维系统 γ⁻² = 0.25 时 Riccati 方程的解 算例 2:

算例 2 是一个 2 维系统。系统参数为

图 5.23 二维系统 $\gamma^{-2} = 1$ 时 Riccati 方程的解 $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix} L = \begin{bmatrix} 0 & 0.2 \end{bmatrix}$ 可以判定当 $\gamma^{-2} \leq 0.25$ 时, H_{∞} -Riccati 微分方程在区间($0,\infty$)内 不会出现有限逃逸现象。按照文献 13 及本节的方法得到的结果是 一样的。若取 $t_{\rm f} = 10, Q_0 = {\rm diag}[10,10]$,则临界参数为 $\gamma_{\rm opt}^{-2} =$

0.8727444219。

如图 5. 22 所示,当取 $\gamma^{-2} = \gamma_{opt}^{-2}$ 时, H_{∞} -Riccati 微分方程的解 在 t = 10 处趋向于无穷大,而当 $\gamma^{-2} > 0.8727444219$ 时,方程的解 会在 t < 10 的某点趋向于无穷大。如图 5. 23 中所示,取 $\gamma^{-2} = 1$,则 方程的解在 t = 7 附近趋向于无穷大。

参考文献

- 1 Green M , Limbeer D J N. Linear Robust Control. New Jersey: Prentice Hall, 1995
- 2 Burl J B. Linear Optimal Control -H₂ and H∞ Methods. California: Addison-Wesley Longman, 1998
- 3 Basar T, Bernhard P. H_∞-optimal Control and Related Minimax Design Problems. Boston: Birkhäuser,1995
- 4 Kratz W. An oscillation theorem for self-adjoint differential systems and the Rayleigh principle for quadratic functionals. Journal of the London Mathematical Society, 1995,51: 401~416
- 5 Kratz W. Quadratic Functionals in Variational Analysis and Control Theory. Berlin: Akademie Verlag, 1995
- 6 钟万勰. H_∞状态反馈与瑞利商精细积分. 计算力学学报, 1998, 15(4): 1~8
- 7 Zhong W X, Williams F W. H_{∞} filtering with secure eigenvalue calculation and precise integration. International Journal for Numerical Methods in Engineering, 1999,46: 1017~1030
- 8 Zhong W X, Williams F W, Bennett P N. Extension of the Wittrick-Williams algorithm to mixed variable systems. Journal of Vibration and Acoustics, 1997,119(3): 334~340
- 9 钟万勰,欧阳华江,邓子辰. 计算结构力学与最优控制. 大连. 大连理工 大学出版社,1993
- 10 Shaked U. H_{∞} -minimum error state estimation of linear stationary process. IEEE Trans Automatic Control, 1990,35: 554 \sim 558
- 11 Bittanti S, Laub A J, Willems J C. The Riccati Equation. Heidelberg:

Springer-verlag, 1991

- 12 Crouch P E, Pavon M. On the existence of solutions of the Riccati differential equation. System & Control Letters, 1987,9: 203~206
- 13 Bolzern P, Colaner P, Nicolao G D. H∞-differential Riccati equations: convergence properties and finite escape phenomena. IEEE Trans Automatic Control, 1997,42: 113~118
- 14 Kenney C S, Leipnik R B. Numerical integration of the differential matrix Riccati equation. IEEE Trans Automatic Control, 1985, 30: $962 \sim 970$

第六章 H_{∞} 滤波微分方程求解

 H_{∞} 滤波是 H_{∞} 控制理论的核心内容之一,在前一章中已经介 绍了有关的基本理论及算法。有限时间 H_{∞} 滤波问题中的 Riccati 微分方程和滤波微分方程分别为非线性矩阵微分方程和线性变系 数微分方程,Riccati 微分方程解的存在性还依赖于参数 $\gamma^{-2[1\sim3]}$ 。 上述微分方程的数值求解比较困难,但对于线性定常系统,只要已 经确定最优参数 γ_{opt}^{-2} ,随后的数值计算都可以纳入精细积分体系 中进行^[4~8],本章将介绍这两类微分方程的求解。

6.1 定常线性系统 H_{∞} 滤波器

考虑线性系统

 $\dot{x} = Ax + Bw, x(0) = x_0$ (6.1.1a)

 $\mathbf{y} = C\mathbf{x} + \mathbf{v} \tag{6.1.1b}$

 $z = Lx \tag{6.1.1c}$

其中x为n维状态向量,y为q维量测向量,z为p维输出向量,w为 l维过程干扰向量,v为q维量测干扰向量,w, $v \in L_2[0,t_f]$ 。定常矩 阵A,B,C和L有恰当的维数,E(A,B)和(A,C)分别可控可观。 H_{∞} 滤波器需要利用量测信息y给出对系统状态线性组合z = Lx的最优估计

$$\hat{\boldsymbol{z}} = \mathcal{F} \boldsymbol{y} \tag{6.1.2}$$

其中滤波器 河 为线性因果算子。并且估计误差(î – Lx) 满足

$$\int_{0}^{t_{\mathrm{f}}} (\hat{\boldsymbol{z}} - \boldsymbol{L}\boldsymbol{x})^{\mathrm{T}} (\hat{\boldsymbol{z}} - \boldsymbol{L}\boldsymbol{x}) \mathrm{d}t < \gamma_{2} \int_{0}^{t_{\mathrm{f}}} (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{w} + \boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}) \mathrm{d}t \quad (6.1.3)$$

如图 6.1 所示,方程(6.1.4) 描述的滤波器是上述问题的一 个解。

图 6.1 H... 滤波器

 $\dot{\hat{x}} = A\hat{x} + QC^{T}(y - C\hat{x}), \hat{x}(0) = \hat{x}_{0}$ (6.1.4a) $\hat{z} = L\hat{x}$ (6.1.4b)

其中Q满足 Riccati 微分方程

 $\dot{\boldsymbol{Q}} = \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} + \boldsymbol{A}\boldsymbol{Q} + \boldsymbol{Q}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{Q}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{Q}, \boldsymbol{Q}(0) = \boldsymbol{Q}_{0}$ (6.1.5)

上述 Riccati 微分方程中的参数 γ^{-2} 大于临界值 γ_{opt}^{-2} 时,方程在区 间[0, t_f]上无解。所以需要首先确定 γ_{opt}^{-2} ,并根据 γ_{opt}^{-2} 的值选定合适 的 γ^{-2} ,再求解相应的 Riccati 方程以构造滤波器。在上一章中已经 指出 γ_{opt}^{-2} 对应于 Hamilton 微分方程边值问题的一阶特征值,并可 以表示为广义 Rayleigh 商驻值的形式,即

$$\gamma_{\text{opt}}^{-2} = \text{st} \, \frac{\overline{\Pi}_1}{\overline{\Pi}_2} \tag{6.1.6}$$

其中

$$\Pi_{1} = \int_{0}^{t_{f}} (\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x} - \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\lambda}) \mathrm{d}t + \frac{1}{2} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{Q}_{0}^{-1} \boldsymbol{x}_{0}$$
(6.1.7a)

$$\boldsymbol{\Pi}_{2} = \int_{0}^{t_{\mathrm{f}}} \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{x} \mathrm{d} t \qquad (6.1.7\mathrm{b})$$

临界参数 γ_{opt}^{-2} 的计算需利用扩展的 Wittrick-Williams 方法结合区 段混合能矩阵微分方程的精细积分进行,第五章对此有详细介绍。

由对偶方程

$$\dot{\mathbf{x}} = A\mathbf{x} + BB^{\mathrm{T}}\boldsymbol{\lambda}$$
 (6.1.8a)

$$\dot{\boldsymbol{\lambda}} = (\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{x} - \boldsymbol{A}^{\mathrm{T}}\boldsymbol{\lambda} - \boldsymbol{C}^{\mathrm{T}}\boldsymbol{y} + \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\hat{\boldsymbol{z}}$$

(6.1.8b)

可以导出 Riccati 微分方程(6.1.5) 和滤波方程(6.1.4a)^[4],而且 对偶方程(6.1.8) 等价于下列变分驻值问题

$$J = \int_{0}^{t_{\rm f}} [\boldsymbol{\lambda}^{\rm T} \dot{\boldsymbol{x}} - H(\boldsymbol{x}, \boldsymbol{\lambda}) - \boldsymbol{x}^{\rm T} \boldsymbol{C}^{\rm T} \boldsymbol{y} + \boldsymbol{\gamma}^{-2} \boldsymbol{x}^{\rm T} \boldsymbol{L}^{\rm T} \hat{\boldsymbol{z}}] dt, \delta J = 0$$
(6.1.9)

其中

$$H(\mathbf{x},\boldsymbol{\lambda}) = \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{A} \mathbf{x} - \frac{1}{2} \mathbf{x}^{\mathrm{T}} (\boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} - \boldsymbol{\gamma}^{-2} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L}) \mathbf{x} + \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\lambda}$$
(6.1.10)

无限长时间 H_∞滤波问题需求解 Riccati 代数方程及定常线性 滤波微分方程,相对简单一些。本章主要讨论有限时间 H_∞滤波问 题,这里的方法可稍作变化用于解决无限长时间 H_∞滤波中的计 算问题。

6.2 混合能矩阵和向量的微分方程

6.2.1 混合能矩阵及向量

如果仅求解 Riccati 微分方程,则按照上一章中的方法,利用 精 细积分方法求解混合能矩阵所满足的微分方程即可。因为还要 求解滤波微分方程,所以需定义相应的混合能向量,并利用精细积 分方法求解。本节介绍精细积分法求解中心 H_∞ 滤波方程的具体 步骤。首先设定步长 η 及需进行计算的时刻 $t_0 = 0, t_1 = \eta, t_2 = 2\eta, \dots, t_k = k\eta, \dots, t_f = k_f\eta$ (6.2.1) 根据 2^N 类算法的特点及精细积分法的要求, 取 $N = 20, R\eta$ 等分 为

$$\tau = \eta/2^N \approx \eta \cdot 10^{-6} \tag{6.2.2}$$

$$\begin{array}{c} t_{a} & t_{b} & t_{c} \\ \hline E_{1}, G_{1}, F_{1}, f_{xc}, f_{c}, J_{R1} & E_{2}, G_{2}, F_{2}, f_{xc}, f_{c}, J_{R2} \\ \hline \end{array} \\ \hline \end{array}$$

图 6.2 区段合并 按照式(6.1.9),对图 6.2 中所示区段(t_a, t_b) 定义区段混合能 $V(\mathbf{x}_a, \mathbf{\lambda}_b) = \mathbf{\lambda}_b^{\mathrm{T}} \mathbf{x}_a - \int_{t_a}^{t_b} [\mathbf{\lambda}^{\mathrm{T}} \dot{\mathbf{x}} - H(\mathbf{x}, \mathbf{\lambda}) - \mathbf{x}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}} \mathbf{y} + \gamma^{-2} \mathbf{x}^{\mathrm{T}} \mathbf{L}^{\mathrm{T}} \hat{\mathbf{z}}] dt$ (6.2.3)

其中 $0 \leq t_a \leq t_b \leq t_f$ 。显然 $V(\mathbf{x}_a, \mathbf{\lambda}_b)$ 是 $\mathbf{x}_a 与 \mathbf{\lambda}_b$ 的二次式,其一般 形式为

$$V(\boldsymbol{x}_{a},\boldsymbol{\lambda}_{b}) = \boldsymbol{\lambda}_{b}^{\mathrm{T}} \boldsymbol{F} \boldsymbol{x}_{a} - \frac{1}{2} \boldsymbol{x}_{a}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{x}_{a} + \frac{1}{2} \boldsymbol{\lambda}_{b}^{\mathrm{T}} \boldsymbol{G} \boldsymbol{\lambda}_{b} + \boldsymbol{\lambda}_{b}^{\mathrm{T}} \boldsymbol{r}_{x} + \boldsymbol{x}_{a}^{\mathrm{T}} \boldsymbol{r}_{\lambda}$$
(6. 2. 4)

其中E,G,F为 $n \times n$ 阶区段混合能矩阵, $E^{T} = E,G^{T} = G,r_{x}$ 和 r_{λ} 为n维向量。对定常系统,矩阵E,G,F及向量 r_{x} 和 r_{λ} 分别满足下列微分方程

$$\frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}t} = \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} + \boldsymbol{A}\boldsymbol{G} + \boldsymbol{G}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{G}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{G}$$

(6.2.5a)

$$\frac{\mathrm{d}\boldsymbol{E}}{\mathrm{d}t} = \boldsymbol{F}^{\mathrm{T}}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{F} \qquad (6.2.5\mathrm{b})$$

$$\frac{\mathrm{d}\boldsymbol{F}}{\mathrm{d}t} = (\boldsymbol{A} - \boldsymbol{G}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L}))\boldsymbol{F} \qquad (6.2.5\mathrm{c})$$

$$\frac{\mathrm{d}\boldsymbol{r}_x}{\mathrm{d}t} = A\boldsymbol{r}_x + \boldsymbol{G}\boldsymbol{C}^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{C}\boldsymbol{r}_x) + \gamma^{-2}\boldsymbol{G}\boldsymbol{L}^{\mathrm{T}}(\boldsymbol{L}\boldsymbol{r}_x - \hat{\boldsymbol{z}})$$

(6.2.6a)

$$\frac{\mathrm{d}\boldsymbol{r}_{\lambda}}{\mathrm{d}t} = \boldsymbol{F}^{\mathrm{T}}\boldsymbol{C}^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{C}\boldsymbol{r}_{x}) + \gamma^{-2}\boldsymbol{F}^{\mathrm{T}}\boldsymbol{L}^{\mathrm{T}}(\boldsymbol{L}\boldsymbol{r}_{x} - \hat{\boldsymbol{z}}) \quad (6.2.6\mathrm{b})$$

比较方程(6.2.6a) 与滤波方程(6.1.4a),若以 \hat{x} 代替 r_x ,并利用式 (6.1.4b),可将式(6.2.6a) 及式(6.2.6b) 分别变换为

$$\frac{\mathrm{d}\boldsymbol{r}_x}{\mathrm{d}t} = \boldsymbol{A}\boldsymbol{r}_x + \boldsymbol{G}\boldsymbol{C}^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{C}\boldsymbol{r}_x) \qquad (6.2.7a)$$

$$\frac{\mathrm{d}\boldsymbol{r}_{\lambda}}{\mathrm{d}t} = \boldsymbol{F}^{\mathrm{T}}\boldsymbol{C}^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{C}\boldsymbol{r}_{x}) \qquad (6.2.7\mathrm{b})$$

显然,当 $t_a \rightarrow t_b$ 时有

 $E \rightarrow 0, G \rightarrow 0, F \rightarrow I_n, r_x \rightarrow 0, r_\lambda \rightarrow 0$ (6.2.8) 其中 I_n 为n阶单位阵(本章中未特别说明的I矩阵是具有恰当维数 的单位阵)。这是微分方程(6.2.5)和(6.2.7)的初值条件。设在 (t_a, t_b)区段内,y(t)线性变化,则y(t)可以由矩阵 $Y_0 = I_p Q Y_1 = tI_p$ 的 2p个列向量线性组合而成, I_p 为p阶单位阵。从而可将向量 微分方程(6.2.7)转化为等价的矩阵微分方程。

$$\frac{\mathrm{d}\boldsymbol{R}_x}{\mathrm{d}t} = \boldsymbol{A}\boldsymbol{R}_x + \boldsymbol{G}\boldsymbol{C}^{\mathrm{T}}(\boldsymbol{Y} - \boldsymbol{C}\boldsymbol{R}_x) \qquad (6.2.9a)$$

$$\frac{\mathrm{d}\boldsymbol{R}_{\lambda}}{\mathrm{d}t} = \boldsymbol{F}^{\mathrm{T}}\boldsymbol{C}^{\mathrm{T}}(\boldsymbol{Y} - \boldsymbol{C}\boldsymbol{R}_{x}) \qquad (6.2.9\mathrm{b})$$

式中*Y* 是由 y(t) 的基底向量构成的矩阵。将 $Y_0 = I_q$ 代入式 (6.2.9a) 及式(6.2.9b) 积分所得矩阵记作 $R_x^{(0)}(\tau), R_\lambda^{(0)}(\tau),$ 即这 两个矩阵满足

$$\frac{\mathrm{d}\boldsymbol{R}_{x}^{(0)}}{\mathrm{d}t} = \boldsymbol{A}\boldsymbol{R}_{x}^{(0)} + \boldsymbol{G}\boldsymbol{C}^{\mathrm{T}}(\boldsymbol{I}_{q} - \boldsymbol{C}\boldsymbol{R}_{x}^{(0)}) \qquad (6.2.10a)$$

$$\frac{\mathrm{d}\boldsymbol{R}_{\lambda}^{(0)}}{\mathrm{d}t} = \boldsymbol{F}^{\mathrm{T}}\boldsymbol{C}^{\mathrm{T}}(\boldsymbol{I}_{q} - \boldsymbol{C}\boldsymbol{R}_{x}^{(0)}) \qquad (6.2.10\mathrm{b})$$

将 $Y_1 = tI_q$ 代入式(6.2.9) 积分所得矩阵记作 $R_x^{(1)}(0,\tau), R_\lambda^{(1)}(0,\tau)$, 即这两个矩阵满足

$$\frac{\mathrm{d}\boldsymbol{R}_{x}^{(1)}}{\mathrm{d}t} = \boldsymbol{A}\boldsymbol{R}_{x}^{(1)} + \boldsymbol{G}\boldsymbol{C}^{\mathrm{T}}(t\boldsymbol{I}_{q} - \boldsymbol{C}\boldsymbol{R}_{x}^{(1)}) \qquad (6.2.11a)$$
$$\frac{\mathrm{d}\boldsymbol{R}_{\lambda}^{(1)}}{\mathrm{d}t} = \boldsymbol{F}^{\mathrm{T}}\boldsymbol{C}^{\mathrm{T}}(t\boldsymbol{I}_{q} - \boldsymbol{C}\boldsymbol{R}_{x}^{(1)}) \qquad (6.2.11b)$$

比较方程(6.2.5a)与Riccati方程(6.1.5)可知两者仅在初值条件 上有差别,相应地方程(6.2.7a)和滤波方程(6.1.4a)的差别为G和Q。上述区段混合能矩阵和向量的微分方程都可以利用区段合 并公式求解。

如图 6.2 所示,相邻区段(t_a , t_b)及(t_b , t_c)通过对 x_b , λ_b 的消元 合并成区段(t_a , t_c),该区段的混合能矩阵 E_c , G_c , F_c 和向量 r_{xc} , $r_{\lambda c}$ 由 原来两个区段的混合能参数表示为

 $G_{c} = G_{2} + F_{2}(G_{1}^{-1} + E_{2})^{-1}F_{2}^{T}$ (6.2.12a) $E_{c} = E_{1} + F_{1}^{T}(E_{2}^{-1} + G_{1})^{-1}F_{1}$ (6.2.12b) $F_{c} = F_{2}(I + G_{1}E_{2})^{-1}F_{1}$ (6.2.12c) $r_{\lambda c} = r_{\lambda 1} + F_{1}^{T}(I + E_{2}G_{1})^{-1}(r_{\lambda 2} - E_{2}r_{x 1})$ (6.2.13a) $r_{x c} = r_{x 2} + F_{2}(I + G_{1}E_{2})^{-1}(r_{x 1} + G_{1}r_{\lambda 2})$ (6.2.13b) 式(6.2.13) 为向量形式,其矩阵形式为

 $R_{\lambda c} = R_{\lambda 1} + F_1^{\mathrm{T}} (I + E_2 G_1)^{-1} (R_{\lambda 2} - E_2 R_{x1}) (6.2.14a)$ $R_{x c} = R_{x 2} + F_2 (I + G_1 E_2)^{-1} (R_{x1} + G_1 R_{\lambda 2}) (6.2.14b)$ 区段合并后的本征值计数公式为

 $J_{R_{c}}(\boldsymbol{\gamma}_{\#}^{-2}) = J_{R_{1}}(\boldsymbol{\gamma}_{\#}^{-2}) + J_{R_{2}}(\boldsymbol{\gamma}_{\#}^{-2}) - s\{\boldsymbol{G}_{1}\} + s\{\boldsymbol{G}_{1}^{-1} + \boldsymbol{E}_{2}\}$ (6.2.15)

式中各量的意义见前一章中的定义。

6.2.2 区段混合能矩阵计算

对长度为 τ 的区段矩阵 $E(\tau)$, $G(\tau)$, $F(\tau)$, $R_x^{(0)}(\tau)$, $R_\lambda^{(0)}(\tau)$ 作 Taylor 级数展开, 并忽略高于 4 阶的项, 可得 $E(\tau) \approx e_1 \tau + e_2 \tau^2 + e_3 \tau^3 + e_4 \tau^4$ (6.2.16a)

$$G(\tau) \approx g_1 \tau + g_2 \tau^2 + g_3 \tau^3 + g_4 \tau^4$$
 (6.2.16b)

$$F(\tau) \approx I + f_1 \tau + f_2 \tau^2 + f_3 \tau^3 + f_4 \tau^4 = I + F'(\tau)$$

(6.2.16c)

$$R_x^{(0)}(\tau) \approx
ho_{x01} \tau +
ho_{x02} \tau^2 +
ho_{x03} \tau^3 +
ho_{x04} \tau^4$$
 (6.2.17a)

 $\boldsymbol{R}_{\boldsymbol{\lambda}}^{(0)}(\tau) \approx \boldsymbol{\rho}_{\boldsymbol{\lambda}01}\tau + \boldsymbol{\rho}_{\boldsymbol{\lambda}02}\tau^{2} + \boldsymbol{\rho}_{\boldsymbol{\lambda}03}\tau^{3} + \boldsymbol{\rho}_{\boldsymbol{\lambda}04}\tau^{4} \quad (6.2.17b)$

显然上述公式与微分方程(6.2.5a) ~ (6.2.5c) 和(6.2.7a) ~ (6.2.7c) 的初始条件(6.2.8) 相容。由于 $R_x^{(1)}(0,\tau)$ 和 $R_\lambda^{(1)}(0,\tau)$ 的特殊性,还需单独介绍其算法。将式(6.2.16a) ~ (6.2.16c) 分别代入微分方程(6.2.5a) ~ (6.2.5c),比较同幂次项有

$$e_{1} = C^{T}C - \gamma^{-2}L^{T}L$$

$$e_{2} = (f_{1}^{T}e_{1} + e_{1}f_{1})/2$$

$$e_{3} = (f_{2}^{T}e_{1} + e_{1}f_{2} + f_{1}^{T}e_{1}f_{1})/3$$

$$e_{4} = (f_{3}^{T}e_{1} + e_{1}f_{3} + f_{2}^{T}e_{1}f_{1} + f_{1}^{T}e_{1}f_{2})/4 \quad (6. 2. 18a)$$

$$g_{1} = BB^{T}$$

$$g_{2} = (Ag_{1} + g_{1}A^{T})/2$$

$$g_{3} = (Ag_{2} + g_{2}A^{T} - g_{1}e_{1}g_{1})/3$$

$$g_{4} = (Ag_{3} + g_{3}A^{T} - g_{2}e_{1}g_{1} - g_{1}e_{1}g_{1})/4 \quad (6. 2. 18b)$$

$$f_{1} = A$$

$$f_{2} = (Af_{1} - g_{1}e_{1})/2$$

$$f_{3} = (Af_{2} - g_{2}e_{1} - g_{1}e_{1}f_{1})/3$$

$$f_{4} = (Af_{3} - g_{3}e_{1} - g_{2}e_{1}f_{1} - g_{1}e_{1}f_{2})/4 \quad (6. 2. 18c)$$

将式(6.2.17a)~(6.2.17b)代入微分方程(6.2.10a)~ (6.2.10b),比较同幂次项有

$$egin{aligned} oldsymbol{
ho}_{ ext{x}01} &= oldsymbol{0} \ oldsymbol{
ho}_{ ext{x}02} &= oldsymbol{g}_1^{ ext{T}} oldsymbol{C}^{ ext{T}}/2 \ oldsymbol{
ho}_{ ext{x}03} &= (oldsymbol{A} oldsymbol{
ho}_{ ext{x}02} + oldsymbol{g}_2 oldsymbol{C}^{ ext{T}})/3 \end{aligned}$$

 $\rho_{x04} = (A\rho_{x03} - g_1e_1\rho_{x02} + g_3C^T)/4 \qquad (6. 2. 19a)$ $\rho_{\lambda01} = C^T$ $\rho_{\lambda02} = f_1^TC^T/2$ $\rho_{\lambda03} = (f_2^TC^T - e_1\rho_{x02})/3$ $\rho_{\lambda04} = (f_3^TC^T - f_1^Te_1\rho_{x02} - e_1\rho_{x03})/4 \qquad (6. 2. 19b)$

由于相邻区段的 $E(\tau)$, $G(\tau)$, $F(\tau)$, $R_x^{(0)}(\tau)$, $R_\lambda^{(0)}(\tau)$ 相同,因而 由 τ 时段的矩阵通过执行区段合并公式 N 次计算 η 时段的混合能 矩阵并不需要其它的步骤,而 $R_x^{(1)}(0,\tau)$ 和 $R_\lambda^{(1)}(0,\tau)$ 则不同。

按照式(6.2.17a) ~ (6.2.17c) 计算时,因区段非常短,该区 段的一阶本征值是一个非常大的正数,对于任何给定的有限值 γ_{\pm}^{-2} ,一般有 $J_R = 0$;若 $J_R \neq 0$,只需将 τ 取更小些使 $J_R = 0$ 即可。 为 避免丧失计算精度,此计算阶段中的合并公式(6.2.12c) 由下 式代替

$$\mathbf{F}'_{c} = \left(\mathbf{F}' - \frac{1}{2}\mathbf{G}\mathbf{E}\right)(\mathbf{I} + \mathbf{G}\mathbf{E})^{-1} + (\mathbf{I} + \mathbf{G}\mathbf{E})^{-1}\left(\mathbf{F}' - \frac{1}{2}\mathbf{G}\mathbf{E}\right) + \mathbf{F}'(\mathbf{I} + \mathbf{G}\mathbf{E})^{-1}\mathbf{F}'$$
(6.2.12c')

这是精细积分算法的关键步骤之一。

因为矩阵 $R_x^{(1)}(0,\tau)$ 和 $R_\lambda^{(1)}(0,\tau)$ 满足的微分方程是(6.2.11a) ~ (6.2.11b),其中含有 τ ,所以相邻两个区段(0, τ) 和(τ ,2 τ) 的矩 阵 $R_{x1}^{(1)}$, $R_{\lambda1}^{(1)}$ 和 $R_{x2}^{(1)}$, $R_{\lambda1}^{(1)}$ 是不同的。但依据叠加原理及量测 y(t) 在 η 区段内线性变化的假设,也可以得到适用于 2^N 算法的表达式。对 于(0, τ) 区段

 $R_{x1}^{(1)} = R_x^{(1)}(0,\tau); \quad R_{\lambda 1}^{(1)} = R_\lambda^{(1)}(0,\tau)$ (6.2.20a) 对于($\tau, 2\tau$) 区段

 $\boldsymbol{R}_{x2}^{(1)} = \tau \boldsymbol{R}_{x}^{(0)}(\tau) + \boldsymbol{R}_{x}^{(1)}(0,\tau); \quad \boldsymbol{R}_{\lambda1}^{(1)} = \tau \boldsymbol{R}_{\lambda}^{(0)}(\tau) + \boldsymbol{R}_{\lambda}^{(1)}(0,\tau)$ (6.2.20b)

式 (6. 2. 20a) ~ (6. 2. 20b) 中的 $R_x^{(0)}(\tau)$, $R_\lambda^{(0)}(\tau)$ 由式 (6. 2. 17a) ~ (6. 2. 17b) 计算, 而 $R_x^{(1)}(0,\tau)$ 和 $R_\lambda^{(1)}(0,\tau)$ 则由其 Taylor 级数展开 式

$$\begin{split} R_x^{(1)}(0,\tau) \approx \rho_{x11}\tau + \rho_{x12}\tau^2 + \rho_{x13}\tau^3 + \rho_{x14}\tau^4 & (6.2,21a) \\ R_\lambda^{(1)}(0,\tau) \approx \rho_{\lambda11}\tau + \rho_{\lambda12}\tau^2 + \rho_{\lambda13}\tau^3 + \rho_{\lambda14}\tau^4 & (6.2,21b) \\ \vdots & \beta \ \text{I} \ (6.2,21a) \sim (6.2,21b) \ \text{C} \ \text{A} \ \text{I} \ (6.2,11a) \sim \\ (6.2,11b), & \vdots \ \text{Vid} \ \text{B} \ \text{K} \ \text{J} \ \text{J}$$

$$\rho_{x_{11}} = \mathbf{0}$$

$$\rho_{x_{12}} = \mathbf{0}$$

$$\rho_{x_{13}} = g_1 C^T / 3$$

$$\rho_{x_{14}} = (A \rho_{x_{13}} + g_2 C^T) / 4 \qquad (6. 2. 22a)$$

$$\rho_{\lambda_{11}} = \mathbf{0}$$

$$\rho_{\lambda_{12}} = C^T / 2$$

$$\rho_{\lambda_{13}} = f_1^T C^T / 3$$

$$\rho_{14} = (f_2^T C^T - e_1 \rho_{12}) / 4 \qquad (6. 2. 22b)$$

计算 η 区段混合能矩阵 $E(\eta), G(\eta), F(\eta), R_x^{(0)}(\eta), R_\lambda^{(0)}(\eta), R_\lambda^{(0)}(\eta), R_x^{(1)}(0,\eta), R_\lambda^{(1)}(0,\eta)$ 的详细过程见 6.4 节。

6.3 Riccati 微分方程和滤波 微分方程的精细积分

6.3.1 Riccati 微分方程精细积分

由 $E(\eta), G(\eta), F(\eta)$ 可以递推计算长度为 $2\eta, 3\eta, \dots, k\eta$ 区段 的混合能矩阵。若已计算了 $k\eta$ 长的区段,以它为区段 1,而 η 长区 段为区段 2,由式(6.2.12a) ~ (6.2.12c) 可以计算(k + 1) η 长区 段的 E, G, F。但按此计算的 E 阵是方程(6.1.5) 在边界条件为 0 时 的解。为求方程在任意边界条件时的解,需假设在 t_0 处有一集中区

$$Q = G + F(Q_0^{-1} + E)^{-1}F^{\mathrm{T}}$$
(6.3.1)

 $F_{a} = F(I + Q_{0}E)^{-1}$ (6.3.2)

进行合并,即可得 $k\eta$ 处 Riccati 方程(6.1.5)的解及微分方程 (6.2.5c)在初始条件变化后的解。本征值计数也应按下述公式再 执行一遍以确定 γ_{out}^{-2}

 $J_{Rq} = J_R - s\{Q_0\} + s\{Q_0^{-1} + E\}$ (6.3.3) 利用文献 8 中的方法,还可以证明

 $\frac{\mathrm{d}\boldsymbol{Q}}{\mathrm{d}t} = \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} + \boldsymbol{A}\boldsymbol{Q} + \boldsymbol{Q}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{Q}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{Q} (6.3.4)$ 当 t = 0 时, $\boldsymbol{E} = \boldsymbol{G} = \boldsymbol{0}, \boldsymbol{F} = \boldsymbol{I},$ 可知由式(6.3.1) 计算得到的 $\boldsymbol{Q}(0)$ = \boldsymbol{Q}_{00}

滤波系统设计时,要求 Riccati 方程的解矩阵正定。在所考虑 的 区间,要求在最后执行完区段合并及本征值计数后 $J_{Rq} = 0$ 。这 表示可以增大 γ_{\pm}^{-2} 。如果此时 $J_{Rq} > 0$,则表示 γ_{\pm}^{-2} 应当减小。结合二 分法经过多次迭代,可以得到满足给定精度要求的临界参数 γ_{opt}^{-2} , 详细算法可参考前一章的内容。

6.3.2 滤波微分方程精细积分

得到临界参数 γ_{opt}⁻² 后,可根据要求取小于 γ_{opt}⁻² 的值,按上面的 方法求解相应参数时的 Riccati 方程,为求解滤波方程提供数据, 此时不再需要进行本征值计数。

可以验证式(6.3.2)中的 F_a 满足微分方程

$$\frac{\mathrm{d}\boldsymbol{F}_{q}}{\mathrm{d}t} = (\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C})\boldsymbol{F}_{q} \qquad (6.3.5)$$

且 $F_q(0) = I_{n,o}$ 所以 F_q 的各列向量必定满足滤波方程(6.1.4a)的 齐次方程,则式(6.1.4a)的齐次方程的解可以表示为 $F_q \hat{x}_{0,o}$ 根据 线 性微分方程解的叠加原理,齐次方程的解加上零初值条件时非 齐次方程的解可构成滤波方程完整的解。仍设在 t_0 处有一集中区段作为区段1,其区段矩阵为 $G_1 = Q_0, E_1 = 0, F_1 = I, R_{x1} = 0, R_{\lambda 1}$ = 0, $h_{\lambda 1}$ 长的区段作为区段2, 按合并公式(6.2.14)有

 $\boldsymbol{R}_{xq} = \boldsymbol{R}_{x} + \boldsymbol{F}_{q}\boldsymbol{Q}_{0}\boldsymbol{R}_{\lambda} \tag{6.3.6a}$

$$\boldsymbol{R}_{\lambda q} = (\boldsymbol{I} + \boldsymbol{E} \boldsymbol{Q}_0)^{-1} \boldsymbol{R}_{\lambda}$$
 (6. 3. 6b)

其中 F_a 按式(6.3.2) 计算。可以证明 R_x 满足的微分方程为

 $\frac{\mathrm{d}\boldsymbol{R}_{xq}}{\mathrm{d}t} = (\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C})\boldsymbol{R}_{xq} + \boldsymbol{Q}\boldsymbol{C}^{\mathrm{T}}\boldsymbol{Y} \qquad (6.3.7)$

这与滤波方程是相同的。因为 y 由矩阵 Y 线性组合而成, $\hat{x}(t)$ 可以 由 R_{xq} 同样线性组合。并且 $t \rightarrow 0$ 时, $R_{xq} = 0$,所以 R_{xq} 是滤波方程 零初值条件的解。

混 合 能 矩 阵 $E(\eta), G(\eta), F(\eta), R_x^{(0)}(\eta), R_x^{(0)}(\eta), R_x^{(1)}(0,\eta),$ $R_{\lambda}^{(1)}(0,\eta)$ 与量测 y 无关,可以先计算存储。滤波实时计算采用单步 递推算法,将已经得到的 $t_k = k\eta$ 时刻的 Q(k) 和 $\hat{x}(k)$ 作为 Q_0, \hat{x}_0 进 行下一步的计算。详细步骤见 6.4 节。

6.4 算法与算例

6.4.1 算法描述

 $A: 区段 \eta$ 的混合能矩阵和向量计算

Step 0 给定一个 γ_{\pm}^{-2}

Step 1 由式(6.2.16a) ~ (6.2.16c), (6.2.17a) ~ (6.2.17b) 计算 $E(\tau)$, $G(\tau)$, $F'(\tau)$, $R_x^{(0)}(\tau)$, $R_\lambda^{(0)}(\tau)$ 作为 E_c , G_c , F'_c , $R_{vc}^{(0)}$, $R_{\lambda c}^{(0)}$, $J_R = 0$

Step 2 由式(6.2.21a) ~ (6.2.21b) 计算 $R_x^{(1)}(0,\tau)$ 及 $R_\lambda^{(1)}(0,\tau)$

Step 3 for (i = 0; i < N; i + +) { $\{E_1 = E_2 = E_c; G_1 = G_2 = G_c; F'_1 = F'_2 = F'_c; R_{x1}^{(0)} =$ $R_{x_2}^{(0)} = R_{x_c}^{(0)}; R_{\lambda_1}^{(0)} = R_{\lambda_2}^{(0)} = R_{\lambda_c}^{(0)} \}$

 $\{ \equiv 角分解 G_1 \ Q_2 + G_1^{-1}, 按式(6. 2. 15) 计算 J_{Rc},$ 若 $J_{Rc} > 0, 则减小 \gamma_{\#}^{-2} 并从 Step1 重新开始 \}$ $\{ 按式(6. 2. 20) 计算 R_{x1}^{(1)}, R_{x2}^{(1)}, R_{\lambda 1}^{(1)}, R_{\lambda 2}^{(1)}; 并执行 \tau = \tau + \tau \}$

{ 按式 (6. 2. 12a ~ (6. 2. 12b), (6. 2. 12c') 及 (6. 2. 14a) ~ (6. 2. 14b) 计算新的 E_c , G_c , F'_c , $R^{(0)}_{xc}$, $R^{(0)}_{\lambda c} \gtrsim R^{(1)}_{xc}(0,\tau)$, $R^{(1)}_{\lambda c}(0,\tau)$ }

Step 4 $F_c = I + F'_c$

B:Riccati 方程及滤波方程的求解

Step 1 给定小于 γ_{opt}^{-2} 的参数 γ^{-2} , 计算各混合能矩阵, $J_R = 0$

Step 2 按式(6.2.12a) ~ (6.2.12c), (6.2.14a) ~

(6.2.14b) 计算以式(6.2.8) 为初值条件的各时刻混合能矩阵

Step 3 按式(6.2.12a) ~ (6.2.12c),(6.2.14a) ~

(6. 2. 14b) 计算以 $G_1 = Q_0, E_1 = 0, F_1 = I$ 为初值条件的混合能矩 阵 E(k), G(k), F(k),此时 G(k)成为 Riccati 方程的解Q(k)

Step 4 for $(k = 1; k \leq k_f; k + +)$ {

{ 以Q(k-1)作为 Q_0 ,按式(6.3.2)计算从k-1到 k的 $F_q(k)$ }

{ 按式(6.3.6),分别由 $R_x^{(0)}(\eta), R_\lambda^{(0)}(\eta)$ 和 $R_x^{(1)}(0, \eta), R_\lambda^{(1)}(0, \eta)$ 计算从 k - 1 到 k 的 $R_{x\eta}^{(0)}(k)$ 和 $R_{x\eta}^{(1)}(k)$ }

}(以上计算可以离线进行)

Step 5 {
$$t = 0$$
 为初始点,读取 \hat{x}_0 ,量测 y_0 }

for $(k = 1; k \leq k_{\rm f}; k + +)$ {

{ 读取 $F_{q}(k), R_{xq}^{(0)}(k), R_{xq}^{(1)}(k)$ }

 $\{ 量测 y_k \}$

 $\{\hat{x}_k = F_q(k)\hat{x}_{k-1} + R_{xq}^{(0)}(k)y_{k-1} + R_{xq}^{(1)}(k)(y_k - k)\}$

$old y_{k-1})$ }
}
6.4.2 算例
算例 1.
第一个算例的系统参数为
$\boldsymbol{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \boldsymbol{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \boldsymbol{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \boldsymbol{L} = \begin{bmatrix} 0 & 0.2 \end{bmatrix}$
$oldsymbol{G}_{\scriptscriptstyle 0} = egin{bmatrix} 0.01 & 0 \ 0.01 \end{bmatrix} oldsymbol{x}_{\scriptscriptstyle 0} = egin{bmatrix} -1 \ 1 \end{bmatrix} oldsymbol{t}_{\scriptscriptstyle \mathrm{f}} = 25$
医利用性细胞 小头体 人名巴格 预定 计 预测 一体头 很多

首先利用精细积分法结合扩展的 Wittrick-Williams 算法得到临 界参数 $\gamma_{opt}^{-2} = 18.72329825$,然后取 $\gamma^{-2} = 0.3 \times \gamma_{opt}^{-2}$,由精细积分 法求 Riccati 微分方程的解。图 6.3 所示为 Riccati 微分方程的解。

图 6.3 Riccati 微分方程的解($\gamma^{-2} = 0.3 \times \gamma^{-2}_{opt}$)

Riccati 微分方程在t = 25时的解记作 Q_f ,而对应的Riccati 代数方程的解由 Matlab 软件中的函数 are 求解,记作 Q_{∞} 。其值分别为
第六章 *H*∞滤波微分方程求解

$$\boldsymbol{\varrho}_{\rm f} = \begin{bmatrix} 1.138876909 & 0.607124167 \\ 0.607124167 & 1.610630415 \end{bmatrix}$$
$$\boldsymbol{\varrho}_{\infty} = \begin{bmatrix} 1.138877020 & 0.607124179 \\ 0.607124179 & 1.610630434 \end{bmatrix}$$

可见两矩阵非常接近。增加 t_f 则微分方程的稳态解会逐渐趋近于 对应代数方程的解,这也同时验证了算法的正确性。

系统状态和滤波的时间历程见图 6.4,滤波初值取 $\hat{x}_0 = \mathbf{0}_0$ 。

图 6.4 系统状态及其滤波 $(r^{-2} = 0.3 \times \gamma_{opt}^{-2})$

现在取 $\gamma^{-2} = 0.5 \times \gamma_{opt}^{-2}$,按相同的方法和步骤计算,此时 Riccati 方程的解、系统的状态及其滤波值分别在图 6.5 和图 6.6 中给出。在 γ^{-2} 接近最优值时,滤波估计误差反而增大,原因之一 是 H_{∞} 滤波的目标是对干扰噪声的抑制,这里不作更多讨论。

图 6.5 Riccati 微分方程的解($\gamma^{-2} = 0.5 \times \gamma^{-2}_{opt}$)

图 6.6 系统状态及其滤波($\gamma^{-2} = 0.5 \times \gamma_{opt}^{-2}$)

算例 2:

第二个算例的系统参数为

 $\boldsymbol{A} = \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix} \quad \boldsymbol{B} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \quad \boldsymbol{C} = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad \boldsymbol{L} = \begin{bmatrix} 0 & 0.2 \end{bmatrix}$ $\boldsymbol{G}_{0} = \begin{bmatrix} 0.01 & 0 \\ 0 & 0.01 \end{bmatrix} \quad \boldsymbol{x}_{0} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \quad t_{f} = 35$

首先计算得到临界参数为 $\gamma_{opt}^{-2} = 26.3668872, 然后取<math>\gamma^{-2} = 0.2 \times \gamma_{opt}^{-2}$,利用精细积分法求解 Riccati 微分方程及滤波微分方程。 图 6.7 给出了 Riccati 微分方程的解,图 6.8 为系统状态和滤波的时间历程,滤波初值仍然取 $\hat{x}_0 = 0$ 。

图 6.7 Riccati 微分方程的解($\gamma^{-2} = 0.2 \times \gamma_{opt}^{-2}$)

Riccati 微分方程在t = 35时的解记作 Q_f ,对应Riccati 代数方程的解记作 Q_{∞} 。其值分别为

 $\boldsymbol{\varrho}_{\rm f} = \begin{bmatrix} 4.50301743010140 & 0.0000000000000\\ 0.000000000000 & 2.25150871505070 \end{bmatrix}$ $\boldsymbol{\varrho}_{\infty} = \begin{bmatrix} 4.50301743010141 & 0.0000000000000\\ 0.000000000000 & 2.25150871505070 \end{bmatrix}$

现在取 $\gamma^{-2} = 0.5 \times \gamma_{opt}^{-2}$,按相同的方法和步骤计算,此时 Riccati 方程的解、系统的状态及其滤波值分别在图 6.9 和图 6.10

图 6.8 系统状态及其滤波($\gamma^{-2} = 0.2 \times \gamma_{opt}^{-2}$) 中给出。与算例 1 中结果类似,在 γ^{-2} 接近最优值时,滤波估计误差 增大。如果取 $\gamma^{-2} = 0.8 \times \gamma_{opt}^{-2}$,效果更加明显,见图 6.11 和 图 6.12。

图 6.9 Riccati 微分方程的解($\gamma^{-2} = 0.5 \times \gamma^{-2}_{opt}$)

第六章 H...滤波微分方程求解

图 6.11 Riccati 微分方程的解($\gamma^{-2} = 0.8 \times \gamma^{-2}_{opt}$)

图 6.12 系统状态及其滤波($\gamma^{-2} = 0.8 \times \gamma_{opt}^{-2}$)

本章介绍了利用精细积分方法求解H_∞滤波问题中的Riccati 微分方程和滤波微分方程的具体过程,类似的方法还可应用于最 优跟踪问题^[9]。

参考文献

- 1 Green M , Limbeer D J N. Linear Robust Control. New Jersey: Prentice Hall, 1995
- 2 Kenney C S, Leipnik R B. Numerical integration of the differential matrix Riccati equation. IEEE Trans Automatic Control, 1985, 30: 962~ 970
- 3 Bolzern P, Colaner P, Nicolao G D. H∞-differential Riccati equations: convergence properties and finite escape phenomena. IEEE Trans Automatic Control, 1997,42: 113~118
- 4 Zhong W X, Williams F W. H_∞ filtering with secure eigenvalue calculation and precise integration. International Journal for Numerical Methods in Engineering, 1999,46: 1017~1030
- 5 钟万勰.卡尔曼-布西滤波的精细积分.大连理工大学学报,1999,39

(2): 191~200

- 6 钟万勰,欧阳华江,邓子辰.计算结构力学与最优控制.大连:大连理工 大学出版社,1993
- 7 吴志刚,钟万勰. H_∞滤波问题数值求解的精细积分算法,自动化学报, 2002,28(2):201~208
- 8 Wu ZG, Leung AYT, Zhong WX, Finite Horizon H_{∞} Filter and its 2^{N} Algorithm, Int. J. Numerical Methods in Engineering. 2002, 53: 1195 ~1210
- 9 吴志刚,钟万勰.跟踪问题最优控制律精细积分,航空学报,2001,22(2):113~116

第七章 连续系统 H_{∞} 状态反馈控制

 H_{∞} 状态反馈控制器可以利用系统的全部状态实现控制,如 图 7.1 中所示。控制器的设计目标是极小化闭环系统从干扰输入*w* 到参考输出 z 的 H_{∞} 诱导范数^[1,2]。本章首先介绍 H_{∞} 状态反馈控 制问题的基本理论,然后介绍定常系统最优 H_{∞} 诱导范数计算以 及 Riccati 微分方程求解的方法,并在此基础上介绍求解闭环系统 状态微分方程的精细积分方法。对有限时间 H_{∞} 控制问题,系统的 闭 环状态微分方程是变系数线性微分方程,其数值求解也可以利 用精细积分方法。

在有关 H_{∞} 滤波问题的章节中已经介绍了 γ_{opt} 与 Hamilton 微 分系统一阶特征值之间的联系,并给出了相应的计算方法。本章将 从对偶系统的角度介绍 H_{∞} 控制与 H_{∞} 滤波之间的关系,阐述两 者构成对偶系统时其最优 H_{∞} 范数的等价性,这样就可以利用前 面章节中的方法计算状态反馈控制系统的最优 H_{∞} 范数。

图 7.1 状态反馈控制系统

7.1 H_{∞} 状态反馈控制

考虑线性时变系统

 $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} + \mathbf{B}_{1}(t)\mathbf{w} + \mathbf{B}_{2}(t)\mathbf{u}, \mathbf{x}(0) = \mathbf{x}_{0}$ (7.1.1a) $\mathbf{z} = \mathbf{C}_{1}(t)\mathbf{x} + \mathbf{D}_{12}(t)\mathbf{u}$ (7.1.1b)

在有限区间[0, t_f]上的控制系统设计问题。其中 *x* 为 *n* 维状态向量 $w \in L_2[0,t_f]$,w 为 *l* 维外扰向量,*u* 为 *m* 维控制向量,*z* 为 *p* 维输出 向量,*p* ≥ *m*,且 $D_{12}^T D_{12} = I_m$, I_m 为 *m* 维单位阵。参考输出式 (7.1.1b)中包含了状态变量的线性组合及控制变量的线性组合, 通过对控制变量的变换,可以将式(7.1.1b)化为下列形式

$$\boldsymbol{z} = \begin{bmatrix} \boldsymbol{C}(t)\boldsymbol{x} \\ \boldsymbol{D}(t)\boldsymbol{u} \end{bmatrix}$$
(7.1.1c)

其中 $D^{T}(t)D(t) = I_{\circ}H_{\circ}$ 控制的目的是寻找线性状态反馈控制 u = Kx (7.1.2)

该控制器使闭环系统的 H.。诱导范数

$$\|\mathscr{G}_{\mathbf{zw}}\|_{\infty,[0,t_{\mathrm{f}}]}^{2} = \sup_{\|\mathbf{w}(t)\|_{2,[0,t_{\mathrm{f}}]\neq 0}} \frac{\int_{0}^{t_{\mathrm{f}}} \mathbf{z}^{\mathrm{T}} \mathbf{z} \mathrm{d}t + \mathbf{x}^{\mathrm{T}}(t_{\mathrm{f}}) S_{\mathrm{f}} \mathbf{x}(t_{\mathrm{f}})}{\int_{0}^{t_{\mathrm{f}}} \mathbf{w}^{\mathrm{T}} \mathbf{w} \mathrm{d}t} < \gamma^{2}$$

(7.1.3)

其中 $S_f \ge 0, \gamma$ 是给定的正数。满足上述条件的控制器称为次优 H_{∞} 控制器, γ 值的下界称为系统的最优 H_{∞} 诱导范数,记作 γ_{opt} 。设 ε > 0,上述性能指标还可以表示为

 $\| z \|_{2}^{2} - \gamma^{2} \| w \|_{2}^{2} + x^{\mathrm{T}}(t_{\mathrm{f}}) S_{\mathrm{f}} x(t_{\mathrm{f}}) \leqslant -\varepsilon \| w \|_{2}^{2} (7.1.4)$ 定理 7. 1^[1] 当且仅当 Riccati 微分方程 $-\dot{S}(t) = A^{\mathrm{T}}(t)S(t) + S(t)A(t) + C^{\mathrm{T}}(t)C(t) - S(t)[B_{2}(t)B_{2}^{\mathrm{T}}(t) - \gamma^{-2}B_{1}(t)B_{1}^{\mathrm{T}}(t)]S(t),$ $\mathbf{S}(t_{\rm f}) = \mathbf{S}_{\rm f} \tag{7.1.5}$

在区间[0,*t*_f]上存在半正定解时,系统(7.1.1)存在满足性能指标的控制器。线性状态反馈控制

$$\boldsymbol{u} = -\boldsymbol{B}_{2}^{\mathrm{T}}(t)\boldsymbol{S}(t)\boldsymbol{x}$$
(7.1.6a)

是满足条件的一个解,并称之为中心控制器(Central controller)。 而外扰向量为

$$\boldsymbol{w} = \boldsymbol{\gamma}^{-2} \boldsymbol{B}_{1}^{\mathrm{T}}(t) \boldsymbol{S}(t) \boldsymbol{x}$$
(7.1.6b)

以此为基础,通过线性分式变换(linear fractional transformation) 就可以构造出所有满足性能指标条件的控制器。

当 系统参数为定常值,且 $t_{f} \rightarrow \infty$ 时,则成为定常系统的无限 时间稳态控制问题。此时系统可表示为

$$\dot{x} = Ax + B_1 w + B_2 u, x(0) = x_0$$
 (7.1.7a)

$$z = \begin{bmatrix} Cx \\ Du \end{bmatrix}$$
(7.1.7b)

并且 (A, B_2) 可控,(A, C)可观。

定理 7.2^[1] 当且仅当 Riccati 代数方程

 $A^{T}S + SA + C^{T}C - S(B_{2}B_{2}^{T} - \gamma^{-2}B_{1}B_{1}^{T})S = 0$ (7.1.8) 存在半正定解,且矩阵 $A - (B_{2}B_{2}^{T} - \gamma^{-2}B_{1}B_{1}^{T})S$ 的特征值实部为负时,系统(7.1.7)存在满足条件的控制器。线性状态反馈控制

$$\boldsymbol{u} = -\boldsymbol{B}_2^{\mathrm{T}}\boldsymbol{S}\boldsymbol{x} \tag{7.1.9a}$$

是满足条件的一个解。此时外扰向量为

$$\boldsymbol{w} = \boldsymbol{\gamma}^{-2} \boldsymbol{B}_{1}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{x} \tag{7.1.9b}$$

同样,对于 $\gamma > \gamma_{opt}$,可以用参数化方法给出所有满足性能指标的 控制器。

上述关于 H_{∞} 状态反馈控制器的定理给出的实际上是次优 H_{∞} 控制器,通过不断减小 γ 可以逐渐逼近最优 H_{∞} 控制器,直至 次优 H_{∞} 控制器不存在为止, γ 值的下界则记作 γ_{opt} ^[2]。因此确定最 优 H_{∞} 诱导范数 γ_{opt} 是控制系统设计中的一个关键环节。在关于 H_{∞} 滤波问题的章节中已经介绍了 H_{∞} 滤波器最优诱导范数的计 算方法。这些方法同样可以用于这里的 γ_{opt} 计算,其理论依据在文 献 3 中已有阐述。本章则从对偶系统的角度建立 γ_{opt} 与 Hamilton 微分系统特征值的关系,进而介绍有关的计算问题。

7.2 对偶系统

考虑下列线性时变因果系统

 $\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$ (7.2.1a)

 $\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t)$ (7.2.1b)

其对偶系统定义为

 $\widetilde{\boldsymbol{x}}(\tau) = \boldsymbol{A}^{\mathrm{T}}(t_{\mathrm{f}} - \tau)\widetilde{\boldsymbol{x}}(\tau) + \boldsymbol{C}^{\mathrm{T}}(t_{\mathrm{f}} - \tau)\widetilde{\boldsymbol{y}}(\tau) \quad (7.2.2\mathrm{a})$

 $\widetilde{\boldsymbol{u}}(\tau) = \boldsymbol{B}^{\mathrm{T}}(t_{\mathrm{f}} - \tau)\widetilde{\boldsymbol{x}}(\tau) + \boldsymbol{D}^{\mathrm{T}}(t_{\mathrm{f}} - \tau)\widetilde{\boldsymbol{y}}(\tau) \quad (7.2.2\mathrm{b})$

对偶系统(7.2.2)与原系统(7.2.1)的状态转移矩阵,脉冲响应函数,2-范数及 ∞ -范数之间分别存在下列等价关系^[2].

 $\widetilde{\boldsymbol{\Phi}}(t,\tau) = \boldsymbol{\Phi}^{\mathrm{T}}(t_{\mathrm{f}} - \tau, t_{\mathrm{f}} - t)$ (7.2.3a)

$$\stackrel{\sim}{\boldsymbol{g}}(t,\tau) = \boldsymbol{g}^{\mathrm{T}}(t_{\mathrm{f}}-\tau,t_{\mathrm{f}}-t)$$
 (7.2.3b)

$$\| \boldsymbol{g} \|_{2,[0,t_{\mathrm{f}}]} = \| \boldsymbol{\widetilde{g}} \|_{2,[0,t_{\mathrm{f}}]}$$
(7.2.3c)

 $\| \boldsymbol{g} \|_{\infty, [0, t_{\mathrm{f}}]} = \| \widetilde{\boldsymbol{g}} \|_{\infty, [0, t_{\mathrm{f}}]}$ (7. 2. 3d)

对于定常系统,当 t_f → ∞ 时式(7.2.3c)和(7.2.3d)仍然成立^[2]。 这里简单解释一下定常对偶系统 ∞- 范数之间的关系,系统(7.2. 1)的传递函数为

 $\boldsymbol{G}(s) = \boldsymbol{C}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B} + \boldsymbol{D} \qquad (7.2.4)$

将上式转置可得其对偶系统的传递函数

 $\boldsymbol{G}^{\mathrm{T}}(s) = \boldsymbol{B}^{\mathrm{T}}(s\boldsymbol{I} - \boldsymbol{A}^{\mathrm{T}})^{-1}\boldsymbol{C}^{\mathrm{T}} + \boldsymbol{D}^{\mathrm{T}} = \boldsymbol{G}(s) \qquad (7.2.5)$

对偶系统的 ∞- 范数为

$$\| \mathbf{G} (s) \|_{\infty} = \sup_{\omega} \{ \overline{\sigma} [\mathbf{G} (j\omega)] \} = \sup_{\omega} \{ \overline{\sigma} [\mathbf{G}^{\mathrm{T}} (j\omega)] \} =$$
$$\sup_{\omega} \{ \overline{\sigma} [\mathbf{G} (j\omega)] \} = \| \mathbf{G} (s) \|_{\infty} \qquad (7.2.6)$$

所以互为对偶系统的 ∞- 范数相等。

现在考虑下列线性系统的滤波问题

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}(t)\boldsymbol{x}(t) + \boldsymbol{B}(t)\boldsymbol{w}(t) \qquad (7.2.7a)$$

$$\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{w}(t) \qquad (7.2.7b)$$

$$\boldsymbol{e}(t) = \boldsymbol{L}(t)\boldsymbol{x}(t) - \hat{\boldsymbol{z}}(t) \qquad (7.2.7c)$$

$$\hat{\boldsymbol{z}}(t) = \mathcal{Z}\{\boldsymbol{y}(t)\}$$
(7.2.7d)

式 (7.2.7d) 中的 \mathscr{Z} {·} 表示线性滤波器,且 $D(t)B^{T}(t) = 0$, $D(t)D^{T}(t) = I_{o}$ 上述系统的对偶系统定义为

 $\dot{\tilde{x}}(\tau) = A^{\mathrm{T}}(\tau)\tilde{\tilde{x}}(\tau) + C^{\mathrm{T}}(\tau)\tilde{\tilde{y}}(\tau) + L^{\mathrm{T}}(\tau)\tilde{\tilde{e}}(\tau) (7.2.8a)$ $\tilde{\tilde{w}}(\tau) = B^{\mathrm{T}}(\tau)\tilde{\tilde{x}}(\tau) + D^{\mathrm{T}}\tilde{\tilde{y}}(\tau)$ (7.2.8b)

$$\hat{\boldsymbol{z}}(\tau) = -\tilde{\boldsymbol{e}}(\tau)$$
 (7.2.8c)

$$\widetilde{\mathbf{y}}(\tau) = \mathscr{Z}\{\widetilde{\hat{\mathbf{z}}}(\tau)\}$$
 (7.2.8d)

若将 $\tilde{y}(\tau)$ 看作控制输入,则系统(7.2.8)可以认为是一个控制系统,通过设计 H_{∞} 控制器 $\widetilde{\mathscr{L}}$ {•},使得

 $J = \| G_{\widetilde{w} \widetilde{e}} \|_{\infty, [0, t_{\mathrm{f}}]} = \sup_{\| \widetilde{e} \|_{2, [0, t_{\mathrm{f}}]} \neq 0} \frac{\| \widetilde{w} \|_{2, [0, t_{\mathrm{f}}]}}{\| \widetilde{e} \|_{2, [0, t_{\mathrm{f}}]}} < \gamma(7. 2. 9)$

显然此控制问题与问题(7.1.1)非常相似,还应注意到(D^{T})^T B^{T} = 0,(D^{T})^T D^{T} = I_{o} 另外,对偶系统的初始条件亦假设为 0。更多关于 对偶系统的介绍见文献 2。

回顾关于 H_{∞} 滤波系统的最优 H_{∞} 范数与相应的Hamilton微 分系统特征值之间的联系,如果采取与通常的程序相反的步骤,将 H_{∞} 反馈控制系统变换为其对偶系统,即 H_{∞} 滤波系统,则两个 Riccati 方程也是对偶的。这样第五章中的有关结论和方法也同样 适用于 H_{∞} 状态反馈控制系统,这里不再重复。

7.3 最优 H_∞ 范数计算及闭环 系统微分方程求解

7.3.1 最优 H. 范数与广义 Rayleigh 商特征值

无限时间 H_{∞} 控制系统设计问题已经有相当多的求解方 法^[4~5],有限时间 H_{∞} 控制系统设计则相对要困难一些,因为系统 设计中需要判断 Riccati 微分方程解的存在性,并确定最优 H_{∞} 范 数 γ_{opt} ,第五章中针对 H_{∞} 滤波问题详细介绍了最优 H_{∞} 范数与相 关的 Hamilton 微分系统特征值之间的关系,其特征值还可以表示 成广义 Rayleigh 商的驻值。

由于第五章中已经详细介绍了相关的理论,所以本章将重点 讨论线性定常系统(7.1.7)的 H_{∞} 控制器设计问题。定理7.1给出 了有限时间 H_{∞} 控制器存在的条件和具体的形式。对于系统 (7.1.7),通过引入拉格朗日乘子 λ ,利用变分法也可得到

 $\boldsymbol{u} = -\boldsymbol{B}_{2}^{\mathrm{T}}\boldsymbol{\lambda} \tag{7.3.1a}$

 $\boldsymbol{w} = \boldsymbol{\gamma}^{-2} \boldsymbol{B}_{1}^{\mathrm{T}} \boldsymbol{\lambda}$ (7.3.1b)

及对偶方程组

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} - (\boldsymbol{B}_2\boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_1\boldsymbol{B}_1^{\mathrm{T}})\boldsymbol{\lambda}$$
(7. 3. 2a)

$$\boldsymbol{\lambda} = -\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{x} - \boldsymbol{A}^{\mathrm{T}}\boldsymbol{\lambda} \tag{7. 3. 2b}$$

其边界条件为

$$\boldsymbol{x}(0) = \boldsymbol{x}_0 \tag{7.3.3a}$$

$$\boldsymbol{\lambda}_{t_{\mathrm{f}}} = \boldsymbol{S}_{\mathrm{f}} \boldsymbol{x}(t_{\mathrm{f}}) = \boldsymbol{S}_{\mathrm{f}} \boldsymbol{x}_{t_{\mathrm{f}}}$$
(7.3.3b)

这是一个 Hamilton 微分方程边值问题。若其中 γ⁻² 的取值使得方 程(7.3.2a)、(7.3.2b)存在满足边界条件(7.3.3)的非平凡解,则 γ^{-2} 称为该边值问题的特征值。

H. 控制器作用下闭环系统的状态方程为

 $\dot{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{A} - (\boldsymbol{B}_2 \boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{B}_1 \boldsymbol{B}_1^{\mathrm{T}}) \boldsymbol{S} \end{bmatrix} \boldsymbol{x}$ (7.3.4)

求解这一具有时变项 *S* 的线性微分方程,即可得到闭环系统状态 的变化规律。

Hamilton 微分方程边值问题(7.3.2)、(7.3.3) 与变分驻值问题

$$\delta \left\{ \int_{0}^{t_{\mathrm{f}}} \left[\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - H(\boldsymbol{x}, \boldsymbol{\lambda}) \right] \mathrm{d}t - \frac{1}{2} \boldsymbol{x}_{t_{\mathrm{f}}}^{\mathrm{T}} \boldsymbol{S}_{\mathrm{f}} \boldsymbol{x}_{t_{\mathrm{f}}} \right\} = 0 \qquad (7.3.5)$$

等价。上式中 $H(x,\lambda)$ 的定义为

 $H(\boldsymbol{x},\boldsymbol{\lambda}) = \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x} - \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} (\boldsymbol{B}_{2} \boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\mathrm{T}}) \boldsymbol{\lambda}$ (7.3.6)

由式(7.3.5)也可以导出对偶方程(7.3.2)及边界条件(7.3.3)。 将变分式(7.3.5)中的参数 γ^{-2} 分离出来可表示为如下形式

$$\gamma^{-2} = \delta \frac{\Pi_1}{\Pi_2} \tag{7.3.7}$$

其中

$$\Pi_{1} = \int_{0}^{t_{f}} \left(\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} - \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x} + \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B}_{2} \boldsymbol{B}_{2}^{\mathrm{T}} \boldsymbol{\lambda} \right) \mathrm{d}t - \frac{1}{2} \boldsymbol{x}_{t_{f}}^{\mathrm{T}} \boldsymbol{S}_{f} \boldsymbol{x}_{t_{f}}$$
(7. 3. 8a)

$$\Pi_2 = \frac{1}{2} \int_0^{t_{\rm f}} \boldsymbol{\lambda}^{\rm T} \boldsymbol{B}_1 \boldsymbol{B}_1^{\rm T} \boldsymbol{\lambda} \mathrm{d}t \qquad (7.3.8\mathrm{b})$$

式(7.3.7) 是广义 Rayleigh 商驻值的形式,与第五章中 H_{∞} 滤波系 统的结果是类似的。广义 Rayleigh 商(7.3.7) 的最小特征值是使 Riccati 微分方程正定解存在的临界参数 γ_{opt}^{-2} ,而 γ_{opt} 是闭环系统的 最优 H_{∞} 诱导范数。由于微分方程(7.3.4) 的积分也可纳入精细积 分求解体系,所以可在完成 H_{∞} 控制系统设计的同时计算闭环系 统的初值响应。 下面将首先定义相应的区段混合能,然后介绍求解 Riccati 微 分方程及计算最优 H_∞ 范数的方法,最后给出闭环系统微分方程 积分的具体步骤。

7.3.2 区段混合能及区段合并

求解微分方程需要将其定义区间离散化,本文中所说的区段 就是离散化后的区间。根据式(7.3.5)及(7.3.6),可以对图 7.2中 的区段(*t_a*,*t_b*)定义下列形式的区段混合能^[3]

 $V(\boldsymbol{x}_{a},\boldsymbol{\lambda}_{b}) = \boldsymbol{\lambda}_{b}^{\mathrm{T}}\boldsymbol{x}_{b} - \int_{t_{a}}^{t_{b}} [\boldsymbol{\lambda}^{\mathrm{T}}\dot{\boldsymbol{x}} - H(\boldsymbol{x},\boldsymbol{\lambda})] \mathrm{d}t \quad (7.3.9)$

图 7.2 区段合并

其中 $0 \leq t_a \leq t_b \leq t_f$, x, λ 满足微分方程(7.3.2), 给定两端条件 $x(t_a) = x_a$, $\lambda(t_b) = \lambda_b$, 则可由微分方程确定区段内的 x, λ_b .

由混合能的定义可知, $V(x_a, \lambda_b)$ 可以表达成 x_a 与 λ_b 的二次式

 $V(\boldsymbol{x}_{a},\boldsymbol{\lambda}_{b}) = \boldsymbol{\lambda}_{b}^{\mathrm{T}}\boldsymbol{F}\boldsymbol{x}_{a} + \frac{1}{2}\boldsymbol{x}_{a}^{\mathrm{T}}\boldsymbol{E}\boldsymbol{x}_{a} - \frac{1}{2}\boldsymbol{\lambda}_{b}^{\mathrm{T}}\boldsymbol{G}\boldsymbol{\lambda}_{b} \quad (7.3.10)$

其中E,G,F为 $n \times n$ 阶的区段混合能矩阵,而且 $E^{T} = E,G^{T} = G$ 。 这三个只和系统矩阵有关的矩阵决定了此二次式,并且矩阵E,G, F 与系统矩阵 A,B_{1},B_{2},C 和D之间的关系可以用下面的微分方程 表达^[3]

$$\frac{\mathrm{d}\boldsymbol{E}}{\mathrm{d}t} = \boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} + \boldsymbol{A}^{\mathrm{T}}\boldsymbol{E} + \boldsymbol{E}\boldsymbol{A} - \boldsymbol{E}(\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})\boldsymbol{E} =$$

$$\boldsymbol{F}^{\mathrm{T}}\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{F} \qquad (7.3.11a)$$

$$\frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}t} = \boldsymbol{F}(\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})\boldsymbol{F}^{\mathrm{T}} =$$

$$(\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}}) + \boldsymbol{A}\boldsymbol{G} + \boldsymbol{G}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{G}\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{G} \quad (7.3.11b)$$

$$\frac{\mathrm{d}\boldsymbol{F}}{\mathrm{d}t} = \boldsymbol{F} [\boldsymbol{A} - (\boldsymbol{B}_2 \boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{B}_1 \boldsymbol{B}_1^{\mathrm{T}}) \boldsymbol{E}] = (\boldsymbol{A} - \boldsymbol{G}\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C})\boldsymbol{F}$$
(7.3.11c)

当 $t_h \rightarrow t_a$ 时

$$E \rightarrow 0, G \rightarrow 0, F \rightarrow I$$
 (7.3.12)

这是微分方程组(7.3.11)的初值条件,其中 I 是单位矩阵。

用常规差分方法求解区段混合能矩阵所满足的微分方程 (7.3.11)一般来讲比较困难,由于方程中有参数 ?⁻² 的影响,还需 判断正定解的存在性。但是按照精细积分方法,相邻区段合并后的 新区段混合能矩阵可以通过区段合并消元得到,递推进行,可以计 算 整个区间内不同长度区段的混合能矩阵,这些矩阵就是微分方 程在相应时刻的数值解。

图 7.2 所示相邻的两个区段 (t_a,t_b) 及 (t_b,t_c) 可以通过对 x_b,λ_b 的消元合并成区段 (t_a,t_c) ,其相应的混合能矩阵 E_c,G_c,F_c 可以由原来区段的混合能矩阵按下列合并消元公式计算

 $E_{c} = E_{1} + F_{1}^{T} (E_{2}^{-1} + G_{1})^{-1} F_{1}$ (7.3.13a) $G_{c} = G_{2} + F_{2} (G_{1}^{-1} + E_{2})^{-1} F_{2}^{T}$ (7.3.13b)

 $F_{c} = F_{2}(I + G_{1}E_{2})^{-1}F_{1}$ (7.3.13c)

上述公式在文献 6 中有详细的介绍,并广泛用于解决 LQ 控 制^[8~9]、Kalman 滤波^[10]等问题。与 LQ 控制问题不同, H_{∞} 控制问 题需要确定最优 H_{∞} 范数 γ_{opt} , γ_{opt}^{-2} 是广义 Rayleigh 商的一阶特征 值。一个区段除了用矩阵 *E*,*G*,*F* 表示其两端特性外(即在 t_a , t_b , t_c 等时刻的值),还应当用特征值表达其内部特性。此区段的 Rayleigh 商特征值也按照式(7.3.7)定义,所不同的是那里的区 段 是整个区间。如何确定区段合并后新区段的特征值当然是关键 问题,这里仍然用区段特征值计数的方法来解决,即根据扩展 Wittrick-Williams 算法确定区段合并后的特征值计数,通过区段 的 逐步合并得到整个区间的特征值计数,而这个计数结合二分法 迭代搜索就可以计算最小特征值。所谓特征值计数是指:对于给定 值 γ_{\pm}^{-2} ,一个区段在其两端分别给定 $\mathbf{x}_a = \mathbf{0}, \lambda_b = \mathbf{0}$ 的条件下,区段 特征值小于 γ_{\pm}^{-2} 的数目,并用 $J_R(\gamma_{\pm}^{-2})$ 来表示这一计数。显然 J_R 是 t_a, t_b 的函数,所以应当记作 $J_R(\gamma_{\pm}^{-2}, t_a, t_b)$,这里省略了后两项。本 章 中区段 1,2 及 c 小于 γ_{\pm}^{-2} 的特征值个数分别用 $J_{R1}(\gamma_{\pm}^{-2})$, $J_{R2}(\gamma_{\pm}^{-2}), J_{Rc}(\gamma_{\pm}^{-2})$ 表示。区段合并后的特征值计数公式为

 $J_{R_{c}}(\boldsymbol{\gamma}_{\#}^{-2}) = J_{R_{1}}(\boldsymbol{\gamma}_{\#}^{-2}) + J_{R_{2}}(\boldsymbol{\gamma}_{\#}^{-2}) - s\{\boldsymbol{E}_{2}\} + s\{\boldsymbol{E}_{2}^{-1} + \boldsymbol{G}_{1}\}$ (7.3.14)

式中的 $s\{M\}$ 表示将矩阵 $M \equiv$ 角分解为 $M = LDL^{T}$ 后,D阵中对角 线元素小于 0 的个数。当 $t_b \rightarrow t_a$ 时,对于给定的有限值 $\gamma_{\#}^{-2}$,显然有 $J_R(\gamma_{\#}^{-2}) = 0$ 。上述公式的证明可参考文献 7 及本书的第二、三章。

7.3.3 最优 H. 范数计算及 Riccati 方程精细积分

很明显,将方程(7.3.11a)时间逆向就是 Riccati 方程,仅在边 界条件上有差别。求此方程的数值解并计算 γ_{opt}^{-2} 需利用区段合并 公式(7.3.13)和特征值计数公式(7.3.14)来进行。首先选择一个 参数 γ_{\pm}^{-2} ,并设定步长 η 及需进行计算的时间点

 $t_0 = 0, t_1 = \eta, t_2 = 2\eta, \cdots, t_k = k\eta, \cdots, t_f = k_f \eta$

(7.3.15)

求 Riccati 方程在这些时刻的数值解,就是求长度分别为 η ,2 η ,…, $k\eta$,… 的区段混合能矩阵。同时还要计算各区段的特征值计数,因 为需要根据特征值计数来确定最优 H_{∞} 范数。

进行上述计算首先需要有长度为 η 的区段的混合能矩阵 *E*, *G*,*F*,这当然可以通过对微分方程(7.3.11)进行积分得到。按照精 细积分法,需进一步将 η 划分为 2^{N} 段,一般选用 N = 20,则 $2^{N} =$ 1048576,于是步长成为

 $\tau = \eta/2^{N} \approx \eta \cdot 10^{-6}$ (7.3.16) 此时再对区段混合能矩阵作 Taylor 级数展开,计算时一般保留到 τ^{4} ,即 $E(\tau) \approx e_{1}\tau + e_{2}\tau^{2} + e_{3}\tau^{3} + e_{4}\tau^{4} \qquad (7. \ 3. \ 17a)$ $G(\tau) \approx g_{1}\tau + g_{2}\tau^{2} + g_{3}\tau^{3} + g_{4}\tau^{4} \qquad (7. \ 3. \ 17b)$ $F(\tau) \approx I + f_{1}\tau + f_{2}\tau^{2} + f_{3}\tau^{3} + f_{4}\tau^{4} = I + F'(\tau)$ $(7. \ 3. \ 17c)$

显然这些级数展开式与微分方程(7.3.11)的初始条件(7.3.12) 是相容的。为求上述公式中的系数,将式(7.3.17)代入微分方程 (7.3.11),对比同幂次项可得

$$e_{1} = C^{T}C$$

$$e_{2} = (f_{1}^{T}e_{1} + e_{1}f_{1})/2$$

$$e_{3} = (f_{2}^{T}e_{1} + e_{1}f_{2} + f_{1}^{T}e_{1}f_{1})/3$$

$$e_{4} = (f_{3}^{T}e_{1} + e_{1}f_{3} + f_{2}^{T}e_{1}f_{1} + f_{1}^{T}e_{1}f_{2})/4 \quad (7. \ 3. \ 18a)$$

$$f_{1} = A$$

$$f_{2} = (Af_{1} - g_{1}e_{1})/2$$

$$f_{3} = (Af_{2} - g_{2}e_{1} - g_{1}e_{1}f_{1})/3$$

$$f_{4} = (Af_{3} - g_{3}e_{1} - g_{2}e_{1}f_{1} - g_{1}e_{1}f_{2})/4 \quad (7. \ 3. \ 18b)$$

$$g_{1} = B_{2}B_{2}^{T} - \gamma_{\pm}^{-2}B_{1}B_{1}^{T}$$

$$g_{2} = (Ag_{1} + g_{1}A^{T})/2$$

$$g_{3} = (Ag_{2} + g_{2}A^{T} - g_{1}e_{1}g_{1})/3$$

$$g_{4} = (Ag_{3} + g_{3}A^{T} - g_{2}e_{1}g_{1} - g_{1}e_{1}g_{2})/4 \quad (7. \ 3. \ 18c)$$

由于式(7.3.17)中 τ 所代表的区段非常短,所以对于计算中指定 的有限正数 γ_{\pm}^{-2} ,必然有该区段的特征值计数 $J_R(\gamma_{\pm}^{-2}) = 0$,这样就 得到了长度为 τ 的区段混合能矩阵表达式和特征值计数,进而可 以按照 2^N 算法计算长为 η 的区段混合能矩阵。为保持计算精度,在 这一计算阶段区段合并公式要用下列形式

> $E_{c} = E + (I + F')^{\mathrm{T}} (E^{-1} + G)^{-1} (I + F') (7.3.19a)$ $G_{c} = G + (I + F')^{\mathrm{T}} (G^{-1} + E)^{-1} (I + F') (7.3.19b)$

 $F'_{c} = (F' - GE/2)(I + GE)^{-1} + (I + GE)^{-1}(F' - GE/2) +$

 $F'(I+GE)^{-1}F'$

(7.3.19c)

事实上这是精细积分法中的关键步骤之一[6]。

得到 $E(\eta)$, $G(\eta)$, $F(\eta)$ 后,就可递推计算长度为 2η , 3η ,..., $k\eta$ 区段的混合能矩阵。设已计算了 $k\eta$ 长的区段,以它为区段 2,而 η 长的区段为区段 1,由(7.3.13) 就可以算出长度为(k + 1) η 的区 段的混合能矩阵,并可逐步递推直至 $k_i\eta$ 。由(7.3.12) 可知此时的 E 阵并不满足Riccati方程的边界条件。仍然按区段合并的思想,设 在 t_i 处有一集中区段,该区段的混合能矩阵分别为 $E_2 = S_i$, $F_2 = I$, $G_2 = 0$,以前面计算的任一区段作为区段 1 与之进行合并消元。 计算 Riccati方程(7.1.5) 在 $k\eta$ 时刻的解时,取区段 1 的长度为(k_i — k) η ,按公式

$$S = E + F^{T}(S_{\mathbf{f}}^{-1} + G)^{-1}F =$$

 $\boldsymbol{E} + \boldsymbol{F}^{\mathrm{T}}(\boldsymbol{I} + \boldsymbol{S}_{\mathrm{f}}\boldsymbol{G})^{-1}\boldsymbol{S}_{\mathrm{f}}\boldsymbol{F}$ (7. 3. 20)

 $\boldsymbol{F}_{p} = (\boldsymbol{I} + \boldsymbol{G}\boldsymbol{S}_{\mathrm{f}})^{-1}\boldsymbol{F}$ (7.3.21)

 $G_p = (G^{-1} + S_f)^{-1}$ (7.3.22)

进行合并,即可得到 kη 时刻 Riccati 方程的解以及另外两个微分方 程(7.3.11b),(7.3.11c)在初始条件变化后的解。而特征值计数 自然也要按下面的公式再执行一遍

 $J_{RSc} = J_{Rc} - s\{S_{f}\} + s\{S_{f}^{-1} + G\}$ (7.3.23) 上述公式的证明在第二章中已经给出。

令 $d/d\tau = -d/dt$, 对(7.3.20) 两边求导,并利用恒等式

$$\frac{\mathrm{d}}{\mathrm{d}t}(X^{-1}) = -X^{-1}\dot{X}X^{-1}$$
(7.3.24)

及 E,G,F 所满足的微分方程(7.3.13a) ~ (7.3.13c),可以证明

$$\frac{\mathrm{d}\boldsymbol{S}}{\mathrm{d}t} = -\boldsymbol{A}^{\mathrm{T}}\boldsymbol{S} - \boldsymbol{S}\boldsymbol{A} - \boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} + \boldsymbol{S}(\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})\boldsymbol{S}$$

(7.3.25)

显然这与Riccati 微分方程(7.1.5) 一致,注意到当 $t = t_f$ 时,E = G

= 0, F = I,按照式(7.3.20) 计算还可满足 Riccati 微分方程的末 端条件 $S(t_f) = S_f$,所以根据式(7.3.20) 得到的 S(t) 就是 Riccati 方程的解。

基于上述讨论,可以按照下面的步骤求解 Riccati 微分方程: 首先按初始条件(7.3.12) 求解式(7.3.11a) \sim (7.3.11c),然后用 式(7.3.20) 计算末端条件为 S_f 时 Riccati 微分方程的解。因为末端 条件 S_f 最后才考虑,当需要修改 S_f 进行重新计算时,前半部分不 用重算,可以减少许多计算工作量。

控制系统设计时,一般要求 Riccati 方程的解矩阵正定。对于 所考虑的时间区间,要求在最后执行完区段合并及特征值计数后 $J_{RSc} = 0$ 。这表示所给定的 γ_{\pm}^{-2} 是次优参数,即 γ_{\pm}^{-2} 小于一阶特征值 γ_{opt}^{-2} ,可以增大。如果此时 $J_{RSc} > 0$,则表示 γ_{\pm}^{-2} 应当减小。通过多次 二分法迭代,可以得到满足精度要求的临界参数 γ_{opt}^{-2} 。

7.3.4 闭环系统微分方程精细积分

将 Riccati 微分方程的解代入式(7.3.4)即构成闭环系统,求 解 这一变系数微分方程组就可以得到闭环系统的初值响应。一般 的变系数微分方程组无法用精细积分法求解,而方程(7.3.4)有 其特殊性,可以用精细积分法求解。

考察式(7.3.20)中 F_p 所满足的微分方程。令 $d/d\tau = -d/dt$, 并利用恒等式(7.3.24),可以证明

 $\frac{\mathrm{d}\boldsymbol{F}_{p}}{\mathrm{d}t} = -\boldsymbol{F}_{p} \begin{bmatrix} \boldsymbol{A} - (\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})\boldsymbol{S} \end{bmatrix} \quad (7.3.26)$

进而还可以导出

 $\frac{\mathrm{d}}{\mathrm{d}t}(\boldsymbol{F}_{p}^{-1}) = \begin{bmatrix} \boldsymbol{A} - (\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})\boldsymbol{S} \end{bmatrix} \boldsymbol{F}_{p}^{-1} \quad (7.3.27)$

这个微分方程就是式(7.3.4)的矩阵形式。通过引入向量

 $\boldsymbol{\xi}_0 = \boldsymbol{F}_p(0)\boldsymbol{x}_0 \tag{7.3.28}$

可以将x(t)表示为

这样就不需再通过对方程(7.3.4) 积分得到 x(t),只需由矩阵计 算 便可完成。因为 $F_p(t)$ 是状态转移矩阵,可按照合并公式计算, 所以按式(7.3.29) 计算的 x(t) 也是精细积分解。

7.4 算法与算例

7.4.1 算法描述

A:计算区段 η 的混合能矩阵 $E(\eta), G(\eta), F(\eta)$

Step 0 选定 γ_{\pm}^{-2}

Step 1 由式 (7.3.17a) ~ (7.3.17c) 计算 $E(\tau)$, $G(\tau)$, $F'(\tau)$,并令其分别等于 E_{ϵ} , G_{ϵ} , F'_{ϵ} , 且 $J_{R\epsilon} = 0$

Step 2 for $(k = 0; k < k_f; k + +)$ {

 $\{E_1 = E_2 = E_c; G_1 = G_2 = G_c; F'_1 = F'_2 = F'_c \}$ { 三角分解 $E_2 \ \ D \ E_2^{-1} + G_1,$ 按式(7.3.14) 计算 J_{Rc} , 若 $J_{Rc} > 0,$ 应减小 γ_{\pm}^{-2} 并重新由 Step 1 开始 } { 由式(7.3.19a) ~ (7.3.19c) 计算 $E_c, G_c, F'_c \}$

}

Step 3 $F_c = I + F'_c$, $E(\eta) = E_c$, $G(\eta) = G_c$, $F(\eta) = F_c$ B: 计算 γ_{out}

Step 0 选定 γ_{\pm}^{-2}

Step 1 $\{E_1 = E_c; G_1 = G_c; F_1 = F_c; J_{R_1} = 0; E_2 = S_1; G_2 = 0; F_2 = I; J_{R_2} = 0\}$

Step 2 for $(k = k_f - 1; k \ge 0; k - -)$ { {由式(7.3.13a) ~ (7.3.13c)及(7.3.14)计算 E_c, G_c, F_c 和 J_{R_c} }

 $\{E_2 = E_c; G_2 = G_c; F_2 = F_c; J_{R_2} = J_{R_c}\}$ $(E_1, G_1, F_1, J_{R_1}$ 不变)

if $(J_{Rc} > 0)$ {跳出循环以较小的 $\gamma_{\#}^{-2}$ 重新从 Step 1 开始}

} Step 3 if $(J_{Rc} > 0)$

 $\{\gamma_{\#}^{-2} \in \gamma_{opt}^{-2}$ 的上界(upperbound), 重新计算前应 减小}

else

 $\{\gamma_{\#}^{-2}$ 是次优参数即 γ_{opt}^{-2} 的下界(lowerbound)} if (upperbound-lowerbound) > ϵ

 ${m \stackrel{\gamma_{\pm}^2}{=} 2} = 新计算 {(\varepsilon > 0 是预先指定的计算 fg)}$

else

```
{break}
```

}

当计算结果满足预定要求时,停止迭代,下界(lowerbound) 作为 γ_{out}^{-2} 。

C:求解闭环系统方程及 Riccati 微分方程

- Step 0 选择 $\gamma_{\pm}^{-2} < \gamma_{opt}^{-2}$,即 $\gamma_{\pm} > \gamma_{opt}$
- Step 1 《计算 $E(\eta), G(\eta), F(\eta); E_1 = E_c = E(\eta), G_1 = G_c = G(\eta), F_1 = F_c = F(\eta)$ 》

Step 2 for $(k = k_f - 1; k \ge 0; k - -)$

 ${存储 E_c, G_c, F_c 在第 k 站}$

 $\{\boldsymbol{E}_2 = \boldsymbol{E}_c; \boldsymbol{G}_2 = \boldsymbol{G}_c; \boldsymbol{F}_2 = \boldsymbol{F}_c\} (\boldsymbol{E}_1, \boldsymbol{G}_1, \boldsymbol{F}_1 \boldsymbol{\overline{\mathbf{\pi}}} \boldsymbol{\underline{\mathbf{\pi}}})$

{按照式(7.3.13a) ~ (7.3.13c), 计算新的 E_c , G_c , F_c }

{读入边界条件 $E_2 = S_f, G_2 = 0, F_2 = I$ } Step 3 for $(k = 0; k < k_f; k + +)$ { {读入存储的 E_{c},G_{c},F_{c} 作为 E,G_{c},F }

{按照(7.3.20)(7.3.21) 计算 S, F_{h} }

{由(7.3.29) 计算闭环系统初值响应}

7.4.2 算例

当 γ_{\pm}^{-2} 趋近于 γ_{opt}^{-2} 时,Riccati 微分方程的解矩阵在t = 0时刻 趋于无穷大奇异对称阵,这是 Riccati 微分方程的一种有限逃逸现 象。实际上无法根据这种数值上无限增长的病态阵来导出增益阵 及控制律,所以连续系统"最优"意义上的 H_{∞} 控制是无法按照这 里的方法实现的。应用中一般取小于 γ_{opt}^{-2} 的参数(即大于最优 H_{∞} 范数 γ_{opt} 的 γ),然后求解 Riccati 方程,进而构造反馈控制律。因此, 本章中的算例在计算临界参数后,取小于 γ_{opt}^{-2} 的值进行闭环系统 响应的计算。

算例1:

第一个算例的系统参数为

$$A = \begin{bmatrix} 0.0 & 1.0 \\ 39.4 & 3.8 \end{bmatrix} \quad B_1 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \quad B_2 = \begin{bmatrix} 0.07 \\ 1.06 \end{bmatrix}$$
$$C = \begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{bmatrix} \quad S_f = \begin{bmatrix} 10.0 & 0.0 \\ 0.0 & 10.0 \end{bmatrix}$$

有限时间区段长 T = 3,计算结果为 $\gamma_{opt}^{-2} = 0.12349039$ 。设系统初 值干扰为 $x_0 = (1.5,1)^T$,当 $\gamma^{-2} = 0.95 \times \gamma_{opt}^{-2}$ 时的系统状态及 Riccati 方程解矩阵的对角线元素分别在图 7.3 和图 7.4 中用虚线 表示,而 $\gamma^{-2} = 0.90 \times \gamma_{opt}^{-2}$ 时的系统状态及 Riccati 方程解矩阵的 对角线元素在图 7.3 和图 7.4 中分别用实线表示。从图中可以发 现 γ 的变化对系统动态响应特性的影响,接近最优 H_{∞} 范数的 γ 值 将导致更大的反馈增益和更大幅度的瞬态响应。

如果区间长度 $t_{\rm f}$ 和边界条件 $S_{\rm f}$ 发生变化,则相应的最优 H_{∞} 范数也会产生变化,表 7-1、表 7-2 和表 7-3 分别给出了相应的结 果。

	51 05 I 45 · 0		- 27
$t_{ m f}$	0.2	0.5	1.00
$\gamma_{ m opt}^{-2}$	1.78902	0.13332	0.12351
$t_{ m f}$	2.00	3.00	4.00
$\gamma_{ m opt}^{-2}$	0.12349	0.12349	0.1349

表 7-1 算例 1 的 $\gamma_{opt}^{-2}(S_{f} = 0.1 \times I_{2})$

表 7-2

算例 1 的 $\gamma_{\text{out}}^{-2}(S_f = I_2)$

$t_{ m f}$	0.2	0.5	1.00
$\gamma_{ m opt}^{-2}$	0.40915	0.12652	0.12350
$t_{ m f}$	2.00	3.00	4.00
$\gamma_{ m opt}^{-2}$	0.12349	0.12349	0.12349

表	7-	-3
1.X	1-	-

算例 1 的 $Y_{ ext{opt}}^{-2}(S_{ ext{f}}=10 imes I_2)$

$t_{ m f}$	0.2	0.5	1.00
$\gamma_{ m opt}^{-2}$	0.20568	0.12478	0.12349
$t_{ m f}$	2.00	3.00	4.00
$\gamma_{ m opt}^{-2}$	0.12349	0.12349	0.12349

系统参数中的 C 矩阵为指标加权阵,如果将 C 中的元素 C(2, 2) 改为 7.0,其它参数不变,计算结果为 $\gamma_{opt}^{-2} = 0.068133771$ 。与图 7.3 和图 7.4 类似, $\gamma^{-2} = 0.95 \times \gamma_{opt}^{-2}$ 时的系统状态及 Riccati 方程 解矩阵的对角线元素分别在图 7.5 和图 7.6 中用虚线表示,而 γ^{-2} = 0.90 × γ_{opt}^{-2} 时系统状态及 Riccati 方程解矩阵的对角线元素在 图 7.5 和图 7.6 中分别用实线表示。加权阵的变化对闭环系统的 H_{∞} 范数和 Riccati 方程解的影响可以通过对比图 7.3 和图 7.5 发现。

C 矩阵变化后,相应的最优 H_{∞} 范数也会产生变化,表 7-4、表 7-5 和表 7-6 分别给出了相应区间长度 $t_{\rm f}$ 和边界条件 $S_{\rm f}$ 时的

 $\gamma_{
m opt}^{-2}$.

रर /-4	地性し支化力	异的I的/ _{opt} ($\mathbf{S}_{\mathrm{f}} = 0.5\times\mathbf{I}_{2}$
$t_{ m f}$	0.2	0.5	1.00
$\gamma_{ m opt}^{-2}$	0.31422	0.093112	0.071689
$t_{ m f}$	2.00	3.00	4.00
$\gamma_{ m opt}^{-2}$	0.068308	0.068136	0.068125

表 7-4 矩阵 C 变化后算例 1 的 $\gamma_{ ext{out}}^{-2}(S_{ ext{f}}=0.5 imes I_2)$

表 7-5 矩阵 C 变化后算例 1 的 $\gamma_{opt}^{-2}(S_f = I_2)$

$t_{ m f}$	0.2	0.5	1.00
$\gamma_{ m opt}^{-2}$	0.29065	0.092217	0.071602
$t_{ m f}$	2.00	3.00	4.00
$\gamma_{ m opt}^{-2}$	0.068304	0.068135	0.068125

表 7-6 矩阵 C 变化后算例 1 的 $\gamma_{opt}^{-2}(S_f = 10 \times I_2)$

$t_{ m f}$	0.2	0.5	1.00
$\gamma_{ m opt}^{-2}$	0.19896	0.097626	0.071126
$t_{ m f}$	2.00	3.00	4.00
$\gamma_{ m opt}^{-2}$	0.068283	0.068134	0.068124

如果取 $\gamma^{-2} = 0$,则 H_{∞} 控制成为LQ控制问题,Riccati方程解 矩阵中的各元素相应变小,此时系统在控制作用下的初值响应幅 值也远小于上文图中给出的响应。

图 7.5 矩阵 C 变化后系统的响应

图 7.6 矩阵 C 变化后 Riccati 方程的解

算例 2:

第二个算例的系统参数为

$$\boldsymbol{A} = \begin{bmatrix} -0.0605 & -32.37 & 0.0 & 32.2 & 0.0 \\ -0.00014 & -1.475 & 10.0 & 0.0 & 2.0 \\ -0.0111 & -34.72 & -2.793 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 0.0 \end{bmatrix}$$
$$\boldsymbol{B}_{1} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.2 \\ 0.0005 \\ 0.1 \end{bmatrix}$$
$$\boldsymbol{B}_{2} = \begin{bmatrix} 0.0 \\ -0.0011 \\ -0.3380 \\ 0.0 \\ 0.2 \end{bmatrix}$$

C = diag[0.5, 0.5, 1.0, 1.0, 1.0]

 $S_{f} = diag[0.1, 0.1, 0.1, 0.1, 0.1]$

取有限区间长度为 $t_f = 10$,相应的计算结果为 $\gamma_{opt}^{-2} = 3.1052429$ 。当系统的初值干扰为 $x_0 = (0,0.1,0,0,0.1)^T$ 时,令 γ^{-2} 取小于 γ_{opt}^{-2} 的不同的值,按本章介绍的方法计算系统的状态。 图 7.7 至图 7.11 分别给出了状态向量各分量随时间的变化曲线, 其中 $\gamma^{-2} = 0.3 \times \gamma_{opt}^{-2}$ 时的状态变化用实线表示, $\gamma^{-2} = 0.6 \times \gamma_{opt}^{-2}$ 时的状态变化用虚线表示, $\gamma^{-2} = 0.9 \times \gamma_{opt}^{-2}$ 时的状态变化用点划 线表示。从中可以发现系统 H_{∞} 范数的变化对系统动态响应的影响,其变化规律与第一个系统类似。

图 7.7 系统响应的时间历程

图 7.8 系统响应的时间历程

图 7.9 系统响应的时间历程

图 7.10 系统响应的时间历程

图 7.11 系统响应的时间历程

与算例1类似,表7-7、表7-8、表7-9分别给出了区间长度 t_f 和 边界条件 S_f 发生变化时系统的 γ_{opt}^{-2} 。

表 7-7

算例 2 的 $\gamma_{\text{opt}}^{-2}(S_{\text{f}} = 10 \times I_2)$

$t_{\rm f}$	0.5	1.0	2.0	3.0	5.0
$\gamma_{ m opt}^{-2}$	208.789	49.6929	6.82423	3.52633	3.17398
$t_{ m f}$	10	15	20	25	30
$\gamma_{ m opt}^{-2}$	3.10524	3.08802	3.08653	3.08632	3.08629

表 7-8

算例 2 的 $\gamma_{opt}^{-2}(S_f = I_2)$

t_{f}	0.5	1.0	2.0	3.0	5.0
$\gamma_{ m opt}^{-2}$	32.2102	9.56749	3.11595	3.00591	3.00591
$t_{ m f}$	10	15	20	25	30
$\gamma_{ m opt}^{-2}$	3.00591	3.00591	3.00591	3.00591	3.00591

表 7-9	算例 2 的 $Y_{opt}^{-2}(S_{f}=0.1 \times I_{2})$					
t_{f}	0.5	1.0	2.0	3.0	5.0	
$\gamma_{ m opt}^{-2}$	208.789	49.6929	6.82423	3.52633	3.17398	
$t_{ m f}$	10	15	20	25	30	
$\gamma_{ m opt}^{-2}$	3.10524	3.08802	3.08653	3.08632	3.08629	

本章介绍了求解 H_{∞} 状态反馈控制系统设计问题的精细积分法,给出了有限时间内闭环系统响应计算的方法。对比文献9 中所介绍的 LQ 控制系统设计的精细积分法可以发现 LQ 与 H_{∞} 控制的相似和不同之处,更多讨论见参考文献 11 ~ 14。

参考文献

- 1 Green M , Limbeer D J N. Linear Robust Control. New Jersey: Prentice Hall, 1995
- 2 Burl J B. Linear Optimal Control -H₂ and H_∞ Methods. California: Addison-Wesley, 1999
- 3 钟万勰. H_∞状态反馈与瑞利商精细积分. 计算力学学报,1998,15(4): 1~8
- 4 申铁龙. H_∞控制理论及应用. 北京:清华大学出版社,1996
- 5 薛定宇. 控制系统计算机辅助设计—— MATLAB 语言及应用. 北京. 清 华大学出版社,1996
- 6 钟万勰,欧阳华江,邓子辰. 计算结构力学与最优控制. 大连. 大连理工 大学出版社,1993
- 7 Zhong W X, Williams F W, Bennett P N. Extension of the Wittrick-Williams algorithm to mixed variable systems. Journal of Vibration and Acoustics, 1997,119(3): 334~340
- 8 钟万勰, 钟翔翔. LQ 控制区段混合能矩阵的微分方程及其应用. 自动化
 学报, 1992, 18(3): 325~331
- 9 钟万勰.线性二次最优控制的精细积分法.自动化学报,2001,27(2): 166~173

- 10 钟万勰.卡尔曼-布西滤波的精细积分.大连理工大学学报,1999,39
 (2):191~200
- 11 Rhee I, Speyer J L. A game theoretic approach to a finite-time disturbance attenuation problem. IEEE Transactions on Automatic Control, 1991,36(9): 1021~1032
- 12 Doyle J C, Glover K, Khargonekar P, Francis B A. State-space solutions to standard H_2 and H_{∞} control problems. IEEE Transactions on Automatic Control, 1989,34(8): 831~847
- 13 Zhou K M, Doyle J C and Glover K. Robust and Optimal Control. New Jersey: Prentice Hall, 1996
- Basar T, Bernhard P. H_∞-optimal Control and Related Minimax Design Problems. Boston: Birkhöuser,1995

第八章 连续系统 H_∞输出反馈控制

 H_{∞} 输出反馈控制问题也称为广义调节器问题, H_{∞} 输出反馈 控制器只能利用系统可测量的状态信号而非全部状态信息,该控 制器可以由一个 H... 全信息控制器和一个 H... 滤波器构成。H... 输 出反馈控制与LQG 控制有一些相似之处,但也有本质的差别。根 据分离性原理,LQG 控制问题可以分解成一个最优状态反馈控制 问题和一个最优状态滤波问题。最优状态反馈控制器通过逆时间 方向求解一个给定终端条件的 Riccati 微分方程来构造,这个最优 状态反馈控制器也是最优的全信息控制器:最优状态滤波器则是 一个 Kalman 滤波器,滤波增益可以通过沿时间方向求解另外一 个给定始端条件的 Riccati 微分方程得到。对于定常系统无限时间 域的控制问题,则是求解相应 Riccati 代数方程的稳定化解。LQG 控制系统设计中的控制与滤波问题是完全解耦的,设计全信息控 制器时并不需要了解噪声的方差,而 Kalman 滤波器的实现也与 控制问题的目标函数无关。这是因为 - Fx 的最优估计由 - $F\hat{x}$ 给出, 而 \hat{x} 是与 F 无关的最优状态估计 $_{\circ}H_{\circ}$ 滤波问题则无此特性,其状 态估计与F有关,滤波器的设计还需要考虑控制问题的目标函数。 H_{∞} 全信息控制器与外界信号进入系统的方式有关,即与 B_1 有关。 而全信息 LQG 控制问题中的 B_1 只对最优目标函数的值有影响, 与最优控制器无关。另外, H_{∞} 控制问题还需要研究解的存在性, 因为 H_{∞} 全信息控制与滤波问题中的Riccati方程并不总是有解, 这是 H_{∞} 控制与 LQG 控制问题的本质区别^[1,2]。

 H_{∞} 输出反馈控制问题存在解的充要条件为^[1,2]:两个 Riccati 方 程的解存在并且这两个解的乘积满足谱半径约束条件,在这两 个 Riccati 方程解的基础上通过线性分式变换可以构造所有满足 要求的 H_{∞} 控制器。前面的章节中已经介绍了求解 Riccati 方程并 判 定其解的存在性的方法,其解的存在性由相应系统的最优 H_{∞} 诱导范数决定。对于 H_{∞} 输出反馈控制问题,只需要将前几章的方 法进行综合就可用于计算系统的最优 H_{∞} 诱导范数,从而给出解 的存在性条件。因为利用精细积分方法既可以求解 Riccati 微分方 程也可以求解 Riccati 代数方程,所以对于线性定常系统可以用统 一的方法求解有限时间和无限时间 H_{∞} 输出反馈控制中的有关计 算问题。本章将首先介绍 H_{∞} 输出反馈控制的基本理论,然后以文 献 $3 \sim 7$ 的内容为基础介绍该系统最优 H_{∞} 诱导范数的计算方法, 并从结构力学的角度介绍 Riccati 微分方程的求解。

8.1 H_∞ 输出反馈控制

8.1.1 输出反馈控制器存在条件

本节介绍 H_∞ 输出反馈控制问题的基本理论。从一般的问题 出发,考虑图 8.1 中所示线性时变系统 P,系统的状态方程为

 $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} + \mathbf{B}_{1}(t)\mathbf{w} + \mathbf{B}_{2}(t)\mathbf{u}$ (8.1.1a)

 $z = C_1(t)x + D_{12}(t)u$ (8.1.1b)

 $y = C_2(t)x + D_{21}(t)w$ (8.1.1c)

其中x为n维状态向量,w为l维外扰向量,u为m维控制向量,y为 q维量测向量,z为p维输出向量, $p \ge m$, $l \ge q$ 。系统矩阵A, B_1 , B_2 , C_1 , C_2 , D_{12} 和 D_{21} 分别具有恰当的维数,并且

 $\boldsymbol{D}_{12}^{\mathrm{T}}\boldsymbol{D}_{12} = \boldsymbol{I}_{m} \tag{8.1.2a}$

 $\boldsymbol{D}_{21}\boldsymbol{D}_{21}^{\mathrm{T}} = \boldsymbol{I}_{q} \tag{8.1.2b}$

 I_m 和 I_q 分别是m和q阶单位矩阵。矩阵对(A, B_2)和(A, C_2)分别是 可稳定和可检测的。另外对于所有的实数 ω ,还应当满足下列矩阵 秩条件(8.1.3)

图 8.1 输出反馈控制 rank $\begin{bmatrix} \mathbf{A} - \mathbf{j}\omega \mathbf{I} & \mathbf{B}_2 \\ \mathbf{C}_1 & \mathbf{D}_{12} \end{bmatrix} = n + m$ (8.1.3a) rank $\begin{bmatrix} \mathbf{A} - \mathbf{j}\omega \mathbf{I} & \mathbf{B}_1 \\ \mathbf{C}_1 & \mathbf{D}_{21} \end{bmatrix} = n + q$ (8.1.3b)

有限时间 H_{∞} 输出反馈控制问题是指寻找系统 P 的线性控制器 $u = \mathcal{K}y$ (8.1.4) 对于给定的正数 γ ,该控制器使闭环系统从外扰 w 到输出 z 的 H_{∞}

诱导范数满足

 $\|\mathscr{R}_{\mathbf{zw}}\|_{\infty,[0,t_{\mathrm{f}}]} = \sup_{\|\mathbf{w}(t)\|_{2,[0,t_{\mathrm{f}}]}\neq 0} \frac{\|\mathbf{z}(t)\|_{2,[0,t_{\mathrm{f}}]}}{\|\mathbf{w}(t)\|_{2,[0,t_{\mathrm{f}}]}} < \gamma(8.1.5)$

当 P 为定常系统时,其无限长时间控制器应当在使系统 P 内稳定 的同时满足

$$\|\mathscr{R}_{zw}\|_{\infty} < \gamma \tag{8.1.6}$$

条件(8.1.5) 可以转化为

 $J_{\gamma} = \| \boldsymbol{z}(t) \|_{2, [0, t_{\mathrm{f}}]}^{2} - \boldsymbol{\gamma}^{2} \| \boldsymbol{w}(t) \|_{2, [0, t_{\mathrm{f}}]}^{2} \leqslant -\boldsymbol{\varepsilon}^{2} \| \boldsymbol{w}(t) \|_{2, [0, t_{\mathrm{f}}]}^{2}$ (8, 1, 7)

其中 ε 为一正数。文献 1、2 介绍了 H_∞ 输出反馈控制器存在的充要 条 件, 文献 3 从结构力学与最优控制模拟理论的角度对此给出了 新的阐述。下面直接引述这些结论。

定理 8.1^[1,2] 在有限时间情况下,系统 *P*存在满足式 (8.1.5) 的线性输出反馈控制器的充要条件是
1. Riccati 微分方程(8.1.8) 在区间[0,t_f] 有解 X_∞

 $\dot{X}_{\infty} = -\tilde{C}^{\mathrm{T}}\tilde{C} - \tilde{A}^{\mathrm{T}}X_{\infty} - X_{\infty}\tilde{A} + X_{\infty}(B_{2}B_{2}^{\mathrm{T}} - \gamma^{-2}B_{1}B_{1}^{\mathrm{T}})X_{\infty}$ $X_{\infty}(t_{\mathrm{f}}) = S_{\mathrm{f}} \qquad (8.1.8)$

其中 $\widetilde{A} = A - B_2 D_{12}^{\mathrm{T}} C_1, \widetilde{C}^{\mathrm{T}} \widetilde{C} = C_1^{\mathrm{T}} (I - D_{12} D_{12}^{\mathrm{T}}) C_1.$

2. Riccati 微分方程(8.1.9) 在区间 $[0, t_f]$ 有解 Y_{∞}

 $\dot{Y}_{\infty} = \overline{B}\overline{B}^{\mathrm{T}} + \overline{A}Y_{\infty} + Y_{\infty}\overline{A}^{\mathrm{T}} - Y_{\infty}(C_{2}^{\mathrm{T}}C_{2} - \gamma^{-2}C_{1}^{\mathrm{T}}C_{1})Y_{\infty}$

$$\boldsymbol{Y}(0) = \boldsymbol{P}_0 \tag{8.1.9}$$

其中 $\overline{A} = A - B_1 D_{21}^{\mathrm{T}} C_2, \overline{BB}^{\mathrm{T}} = B_1 (I - D_{21}^{\mathrm{T}} D_{21}) B_1^{\mathrm{T}}.$

3. 对于所有的 $t \in [0, t_i], \rho(X_{\infty}(t)Y_{\infty}(t)) < \gamma^2$,其中 $\rho(\cdot)$ 表示矩阵的谱半径,这就是所谓谱半径条件。

在上述条件同时成立的条件下,控制器 *光*由下列线性分式 变换给定

$$\mathcal{K} = \mathcal{F}_l(\boldsymbol{K}_a, \boldsymbol{U}) \tag{8.1.10}$$

线性因果系统 U 应满足

$$\| \boldsymbol{U} \|_{[0,t_{\mathrm{f}}]} < \gamma \tag{8.1.11}$$

而 K_a 是由下式描述的系统

$$\boldsymbol{K}_{a} = \begin{bmatrix} \boldsymbol{A}_{k} & \boldsymbol{B}_{k1} & \boldsymbol{B}_{k2} \\ \boldsymbol{C}_{k1} & \boldsymbol{0} & \boldsymbol{I} \\ \boldsymbol{C}_{k2} & \boldsymbol{I} & \boldsymbol{0} \end{bmatrix}$$
(8.1.12)

其中

$$\boldsymbol{A}_{k} = \boldsymbol{A} + \boldsymbol{\gamma}^{-2} \boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\mathsf{T}} \boldsymbol{X}_{\infty} - \boldsymbol{B}_{2} \boldsymbol{F}_{\infty} - \boldsymbol{B}_{k1} \boldsymbol{C}_{2z} \quad (8. 1. 13a)$$
$$\begin{bmatrix} \boldsymbol{B}_{k1} & \boldsymbol{B}_{k2} \end{bmatrix} = \begin{bmatrix} \boldsymbol{B}_{1} \boldsymbol{D}_{21}^{\mathsf{T}} + \boldsymbol{Z}_{\infty} \boldsymbol{C}_{2z}^{\mathsf{T}} & \boldsymbol{B}_{2} + \boldsymbol{\gamma}^{-2} \boldsymbol{Z}_{\infty} \boldsymbol{F}_{\infty}^{\mathsf{T}} \end{bmatrix}$$

(8.1.13b)

$$\begin{bmatrix} \boldsymbol{C}_{k_1} \\ \boldsymbol{C}_{k_2} \end{bmatrix} = \begin{bmatrix} -\boldsymbol{F}_{\infty} \\ -\boldsymbol{C}_{2z} \end{bmatrix}$$
(8.1.13c)

$$\boldsymbol{F}_{\infty} = \boldsymbol{D}_{12}^{\mathrm{T}} \boldsymbol{C}_{1} + \boldsymbol{B}_{2}^{\mathrm{T}} \boldsymbol{X}_{\infty} \qquad (8. \, 1. \, 13 \mathrm{d})$$

 $\mathbf{Z}_{\infty} = \mathbf{Y}_{\infty} (\mathbf{I} - \gamma^{-2} \mathbf{X}_{\infty} \mathbf{Y}_{\infty})^{-1} = (\mathbf{I} - \gamma^{-2} \mathbf{Y}_{\infty} \mathbf{X}_{\infty})^{-1} \mathbf{Y}_{\infty}$ (8.1.13e)

 $C_{2z} = C_2 + \gamma^{-2} D_{21} B_1^{\mathrm{T}} X_{\infty}$ (8.1.13f) 令 U = 0,则可得到中心控制器

 $\dot{\hat{x}} = A\hat{x} + B_1\hat{w}^* + B_2u + B_{k1}[y - (C_2\hat{x} + D_{21}\hat{w}^*)]$

(8.1.14)

$$\boldsymbol{u} = -\boldsymbol{F}_{\infty}\hat{\boldsymbol{x}} \tag{8.1.15}$$

$$\hat{\boldsymbol{w}}^* = \boldsymbol{\gamma}^{-2} \boldsymbol{B}_1^{\mathrm{T}} \boldsymbol{X}_{\infty} \hat{\boldsymbol{x}}$$
(8.1.16)

定理 8. 2^[1,2] 对于定常系统 *P* 无限时间情况下的控制问题,系统存在满足式(8.1.6)的线性输出反馈控制器的充要条件是

1. Riccati 代数方程(8.1.17) 有解

 $-\widetilde{\boldsymbol{C}}^{\mathrm{T}}\widetilde{\boldsymbol{C}}-\widetilde{\boldsymbol{A}}^{\mathrm{T}}\boldsymbol{X}_{\infty}-\boldsymbol{X}_{\infty}\widetilde{\boldsymbol{A}}+\boldsymbol{X}_{\infty}(\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}}-\boldsymbol{\gamma}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})\boldsymbol{X}_{\infty}=\boldsymbol{0}$ (8, 1, 17)

并且 $X_{\infty} \ge 0$, $\widetilde{A} - (B_2 B_2^{\mathrm{T}} - \gamma^{-2} B_1 B_1^{\mathrm{T}}) X_{\infty}$ 渐进稳定。

2. Riccati 代数方程(8.1.18) 有解

 $\overline{B}\overline{B}^{\mathrm{T}} + \overline{A}Y_{\infty} + Y_{\infty}\overline{A}^{\mathrm{T}} - Y_{\infty}(C_{2}^{\mathrm{T}}C_{2} - \gamma^{-2}C_{1}^{\mathrm{T}}C_{1})Y_{\infty} = \mathbf{0}$

(8.1.18)

其中 $Y_{\infty} \ge 0, \overline{A} - Y_{\infty}(C_2^{\mathrm{T}}C_2 - \gamma^{-2}C_1^{\mathrm{T}}C_1)$ 渐进稳定。

3. $\rho(X_{\infty}Y_{\infty}) < \gamma^2$

若上述条件同时成立,则控制器 \mathcal{K} 可由下列线性分式变换 $\mathcal{K} = \mathcal{F}_1(K_*, U)$

给定,式中 $||U||_{\infty} < \gamma, K_a$ 的定义与定理 8.1 中的定义相同,而中 心控制器也由式(8.1.14) ~ (8.1.16) 定义。

图 8.2 给出了 H_{∞} 中心控制器的示意图^[1]。从图中可以看到, 控制向量 u 由反馈增益 F_{∞} 与状态估计 \hat{x} 的乘积构成,而 \hat{x} 由一个 观测器生成。此观测器由量测 y 与量测估计 $\hat{y}^* = C_2 \hat{x} + D_{21} \hat{w}^*$ 之 间 的差驱动,而这个差值是由最坏情况(worst-case) 外界干扰 w^* 引起的。因此 H_{∞} 控制是在最坏外界干扰下的控制。

图 8.2 H_∞ 中心控制器

两个Riccati方程有解仅是 H_{∞} 输出反馈控制器存在的必要条件而非充分条件。尽管如此, H_{∞} 输出反馈控制器的解仍是通过求解全信息控制问题和滤波问题得到的,这是 H_{∞} 控制的分离性原理^[1]。

显然,确定满足定理 8.1 或定理 8.2 条件的 γ 值的下界 γ_{opt} 是 H_{∞} 控制系统设计中的基本环节。根据上述定理中的充要条件确 定可行参数 γ 并求解两个 Riccati 微分或代数方程之后,就可以利 用方程的解构造相应的 H_{∞} 控制器。计算 γ_{opt} 的步骤在 8.3 节中介 绍。

8.1.2 两个特殊的输出反馈控制问题

前面讨论的是一般形式的线性系统输出反馈控制问题,现在 介绍两种特殊情况下的系统控制问题,这两种情况下只需求解一 个Riccati 方程就可以解决问题。首先考虑当式(8.1.1c)简化为

$$\mathbf{y} = \mathbf{C}_2 \mathbf{x} + \mathbf{w} \tag{8.1.19}$$

时的控制问题。此时系统的观测器为

$$\hat{x} = A\hat{x} + B_2 u + B_1 (y - C_2 \hat{x})$$
 (8.1.20)

 $\hat{\boldsymbol{w}} = \boldsymbol{y} - \boldsymbol{C}_2 \hat{\boldsymbol{x}} \tag{8.1.21}$

对系统状态 x 的估计和外界干扰 w 的估计都可以利用量测数据 y。 这样全信息控制器中所需的状态 x 就可以由 \hat{x} 代替。而且此输出 反馈控制问题存在的条件为当且仅当下列 Riccati 方程在区间[0, t_f]上有解。

 $\dot{X}_{\infty} = -\widetilde{C}^{\mathrm{T}}\widetilde{C} - \widetilde{A}^{\mathrm{T}}X_{\infty} - X_{\infty}\widetilde{A} + X_{\infty}(B_{2}B_{2}^{\mathrm{T}} - \gamma^{-2}B_{1}B_{1}^{\mathrm{T}})X_{\infty}$ $X_{\infty}(t_{\mathrm{f}}) = S_{\mathrm{f}} \qquad (8.1.22)$

其中 $\widetilde{A} = A - B_2 D_{12}^{\mathsf{T}} C_1, \widetilde{C}^{\mathsf{T}} \widetilde{C} = C_1^{\mathsf{T}} (I - D_{12} D_{12}^{\mathsf{T}}) C_1$ 。显然这就是方程 (8.1.8)。

现在考虑当式(8.1.1b)简化为

 $\boldsymbol{z} = \boldsymbol{C}_1 \boldsymbol{x} + \boldsymbol{u} \tag{8.1.23}$

时的控制问题。此时输出反馈控制器存在的充要条件为下列 Riccati 方程在区间[0,t_f]上有解。

 $\dot{\boldsymbol{Y}}_{\infty} = \boldsymbol{\overline{B}}\boldsymbol{\overline{B}}^{\mathrm{T}} + \boldsymbol{\overline{A}}\boldsymbol{Y}_{\infty} + \boldsymbol{Y}_{\infty}\boldsymbol{\overline{A}}^{\mathrm{T}} - \boldsymbol{Y}_{\infty}(\boldsymbol{C}_{2}^{\mathrm{T}}\boldsymbol{C}_{2} - \boldsymbol{\gamma}^{-2}\boldsymbol{C}_{1}^{\mathrm{T}}\boldsymbol{C}_{1})\boldsymbol{Y}_{\infty}$

 $\boldsymbol{Y}(0) = \boldsymbol{P}_0 \tag{8.1.24}$

 $\mathbf{\underline{\mu}} = \mathbf{A} - \mathbf{B}_1 \mathbf{D}_{21}^{\mathrm{T}} \mathbf{C}_2, \mathbf{\overline{BB}}^{\mathrm{T}} = \mathbf{B}_1 (\mathbf{I} - \mathbf{D}_{21}^{\mathrm{T}} \mathbf{D}_{21}) \mathbf{B}_1^{\mathrm{T}}.$

8.2 Riccati 微分方程解的力学意义

下面以 Riccati 微分方程(8.1.8)的求解为例简要介绍结构力 学与最优控制模拟理论的基本内容,方程(8.1.9)的求解与之相 类似。首先介绍一个最基本的模拟关系:控制系统的状态变量和协 态变量分别与子结构链内的位移和内力对应。另外,如图 8.3 中所 示,[0, t_f]时间段表示 Riccati 微分方程的求解区间,数值计算时这 一时间段可以分为n个等长区段,图中区段i的长度为 $\eta = t_b - t_a$, 然后再计算方程在各时刻的值。与之相对应,图 8.3 中还给出了由 n个等长子结构所组成的子结构链,其长度为 Z_o Riccati 微分方程 的末端条件 S_f 对应于子结构链在 Z 端的边界支撑刚度阵;Riccati 微分方程的解在 t_i 时刻的值 $X(t_i)$ 对应于子结构链在 z_i 处的刚度 阵 $Q(z_j)^{[4]}$ 。按照结构力学理论,子结构链在 $z_j(j = 0,1,2,...,n$ - 1)处的刚度阵可以通过区段混合能合并公式来计算,所以 Riccati 方程的解也可以通过定义相应的混合能,然后进行区段合 并得到。模拟理论还指出:确保 Riccati 方程(8.1.8)在区间 $[0,t_f]$ 上有解的临界参数 γ_{opt}^{-2} 对应于子结构链弹性稳定或结构振动的最 小特征值,而子结构链的一阶特征值可以利用精细积分法结合扩 展 Wittrick-Williams 算法计算到任意指定的精度^[7],Riccati 方程 (8.1.8)的临界参数 γ_{opt}^{-2} 当然亦可同样计算。本书第五章还介绍过 γ_{opt}^{-2} 是 Riccati 微分方程在区间 $[0,t_f]$ 上出现有限逃逸现象的临界 值。

Riccati 方程定义区间 [0,t]

图 8.3 Riccati 微分方程的解与子结构链刚度

一般求解 Riccati 微分方程的方法都属于差分类方法,而 Riccati 代数方程的解则可以通过求解相关矩阵的广义特征值问 题 等许多方法得到。精细积分方法对于这两类方程采用的是一致 的 方法,并可保证数值计算的精确性和稳定性,Riccati 微分方程 的 解在经过一定的步数后趋向于稳态解,即 Riccati 代数方程的 解。精细积分法不同于求解微分方程的差分类方法,在方程的末端 (或初始)条件改变时,不需要全部重新计算。

精细积分方法的核心是相邻区段混合能的合并,通过合并得

到新区段的混合能矩阵,逐步递推得到整个区间上的解。考虑 图 8.3 中所示子结构链中的第 *i* 段。设 Q_1 阵是当 b 端完全自由时, 在 a 端的刚度阵; G_1 阵是当子结构的 a 端位移为 0 时,b 端的柔度 阵; F_1 阵是b 端完全自由,在a 端给出单位位移时b 端发生的位移, 即位移的传递阵。 x_a , x_b 为a,b端的位移向量, λ_a , λ_b 为a,b端的内力 向量。利用混合能矩阵 Q_1 , G_1 , F_1 和位移,内力向量,可将区段 *i* 的 混合能表示为

 $V(\mathbf{x}_{a}, \boldsymbol{\lambda}_{b}) = \boldsymbol{\lambda}_{b}^{\mathrm{T}} \boldsymbol{F}_{1} \boldsymbol{x}_{a} + \boldsymbol{x}_{a}^{\mathrm{T}} \boldsymbol{Q}_{1} \boldsymbol{x}_{a}/2 - \boldsymbol{\lambda}_{b}^{\mathrm{T}} \boldsymbol{G}_{1} \boldsymbol{\lambda}_{b}/2$ (8.2.1) 与其相邻的子结构 *i* + 1 也有相应的混合能矩阵 $\boldsymbol{Q}_{2}, \boldsymbol{G}_{2}, \boldsymbol{F}_{2}$ 。两个子 结构合并在一起构成的结构段(z_{a}, z_{c})的 $\boldsymbol{Q}_{c}, \boldsymbol{G}_{c}, \boldsymbol{F}_{c}$ 矩阵可以通过 下面的公式计算

$$\boldsymbol{Q}_{c} = \boldsymbol{Q}_{1} + \boldsymbol{F}_{1}^{\mathrm{T}} (\boldsymbol{Q}_{2}^{-1} + \boldsymbol{G}_{1})^{-1} \boldsymbol{F}_{1}$$
 (8. 2. 2a)

$$\boldsymbol{G}_{c} = \boldsymbol{G}_{2} + \boldsymbol{F}_{2}(\boldsymbol{G}_{2}^{-1} + \boldsymbol{Q}_{1})^{-1}\boldsymbol{F}_{1}^{\mathrm{T}}$$
(8. 2. 2b)

 $\boldsymbol{F}_{c} = \boldsymbol{F}_{2}(\boldsymbol{I}_{n} + \boldsymbol{Q}_{2}\boldsymbol{G}_{1})^{-\mathrm{T}}\boldsymbol{F}_{1} \qquad (8.2.2\mathrm{c})$

其中 I_n 为n阶单位阵。

这些区段合并公式可以递推运用,也就是子结构递推合并,逐 步得到子结构链中各端口的 Q,G,F 矩阵。参考图 8.3 中的模拟关 系可知,区段合并公式也是求 Riccati 微分方程数值解的公式,由 此得到 Riccati 微分方程在 t_j 时刻的值 $X(t_j)$ 。定义用于求解 Riccati 微分方程的区段混合能矩阵为 $Q = Q(\Delta t)$, $G = G(\Delta t)$,F $= F(\Delta t)(\Delta = t_b - t_a)$,它们与子结构的混合能矩阵参数——对 应。矩阵 Q,G,F 满足下列微分方程

$$\frac{\mathrm{d}\boldsymbol{Q}}{\mathrm{d}t} = \boldsymbol{F}^{\mathrm{T}} \widetilde{\boldsymbol{C}}^{\mathrm{T}} \widetilde{\boldsymbol{C}} F =$$

 $\widetilde{\boldsymbol{C}}^{\mathrm{T}}\widetilde{\boldsymbol{C}} + \widetilde{\boldsymbol{A}}^{\mathrm{T}}\boldsymbol{Q} + \boldsymbol{Q}\widetilde{\boldsymbol{A}} - \boldsymbol{Q}(\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}_{\pm}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})\boldsymbol{Q} \quad (8.2.3a)$ $\frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}t} = \boldsymbol{F}(\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}_{\pm}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})\boldsymbol{F}^{\mathrm{T}} =$

 $(\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}}-\boldsymbol{\gamma}_{\pm}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})+\widetilde{A}\boldsymbol{G}+\boldsymbol{G}\widetilde{\boldsymbol{A}}^{\mathrm{T}}-\boldsymbol{G}\widetilde{\boldsymbol{C}}^{\mathrm{T}}\widetilde{\boldsymbol{C}}\boldsymbol{G}\quad(8.2.3\mathrm{b})$

$$\frac{\mathrm{d}\boldsymbol{F}}{\mathrm{d}t} = \boldsymbol{F}[\widetilde{\boldsymbol{A}} - (\boldsymbol{B}_2\boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}_{\#}^{-2}\boldsymbol{B}_1\boldsymbol{B}_1^{\mathrm{T}})\boldsymbol{Q}] =$$

 $(\widetilde{A} - G\widetilde{C}^{\mathrm{T}}\widetilde{C})F$ (8.2.3c)

在 $t = t_f$ 处的末端条件为

 $Q = 0, G = 0, F = I_n$ (8.2.4)

式中的求导对于 Riccati 微分方程是时间,对于子结构链则是长度。对子结构链来说,式中的系数矩阵当然是由子结构的物理参数 决定的。方程(8.2.3a)与 Riccati 微分方程(8.1.8)的差别在于对 时间求导的方向和边界条件。

Riccati 微分方程在区间[0, $t_{\rm f}$] 有解的临界参数 $\gamma_{\rm opt}^{-2}$ 对应于整 个子结构链的一阶固有特征值。按扩展的 Wittrick-Williams 算 法,计算整个子结构链的特征值需要引入特征值计数的概念,即对 于给定的值 $\omega_{\pm}^2(\omega_{\pm}^2 = \gamma_{\pm}^{-2})$,用 $J_R(\omega_{\pm})$ 表示区段(z_a, z_b) 在 a 端位 移和 b 端内力分别为 0 的条件下,其特征值 $\omega^2 < \omega_{\pm}^2$ 的个数,对于 Riccati 方程来讲就是 $\gamma^{-2} < \gamma_{\pm}^{-2}$ 的计数。如果已知区段(z_a, z_b) 和 (z_b, z_c) 的特征值计数为 $J_{R1}(\omega_{\pm})$ 和 $J_{R2}(\omega_{\pm})$,那么合并后区段(z_a, z_c)

 $J_{R_{c}}(\omega_{\#}) = J_{R_{1}}(\omega_{\#}) + J_{R_{2}}(\omega_{\#}) - s\{Q_{2}\} + s\{Q_{2}^{-1} + G_{1}\}$

(8.2.5)

其中 $s\{M\}$ 表示将矩阵 $M \equiv$ 角分解为 $M = LDL^{T}$ 时,D中负对角元素的个数。

方程(8.2.3a) 与 Riccati 方程(8.1.8) 的末端条件不同,因此 仅按合并公式(8.2.2) 得到的Q只是末端条件 $S_f = 0$ 时 Riccati 微 分 方程的解。要得到任意末端条件 S_f 时的解,还需要在求出整个 区间内的 Q,G,F,J_R 后再按下式计算

 $\boldsymbol{X} = \boldsymbol{Q} + \boldsymbol{F}^{\mathrm{T}} (\boldsymbol{S}_{\mathrm{f}}^{-1} + \boldsymbol{G})^{-1} \boldsymbol{F}$ (8. 2. 6)

 $J_{RSc} = J_{Rc} - s\{\mathbf{S}_{f}\} + s\{\mathbf{S}_{f}^{-1} + \mathbf{G}\}$ (8.2.7)

此时的 X 和 J_{RSc} 就分别是 Riccati 微分方程在末端条件为 S_f 时的

解和特征值计数。末端条件变化时,只需利用前面存储的数据,按 照式(8.2.6)(8.2.7)重新计算一遍即可,这是精细积分方法的特 点之一。

按照式(8.2.6)、(8.2.7) 计算后,如果 $J_{Rs} = 0$,则表示此时的 γ_{\pm}^{-2} 小于临界参数 γ_{opt}^{-2} ,只是次优参数。从子结构链的角度来解释 就是子结构链的一阶特征值大于 ω_{\pm}^{2} 。如果 $J_{Rs} \neq 0$,则结论正好相 反。 H_{∞} 状态反馈控制或 H_{∞} 滤波问题只需求解一个 Riccati 方程, 可 以在此时根据计数结果增大或减小 $\gamma_{\pm}^{-2}(\omega_{\pm}^{2})$,并不断重复直到 找到满足精度要求的临界参数。 H_{∞} 输出反馈控制问题则应同时 考虑两个 Riccati 方程及谱半径约束条件。

精细积分方法求解 Riccati 微分方程是通过区段合并实现的, 因此首先需要确定长为 η 的区段(基本区段)的混合能矩阵 Q,G, F_{o} 由微分方程(8.2.3)用差分法计算是一个很自然的思路,但精 细积分法则是将图 8.3 中的一个区段再等分成 2^{N} 小段,每一小段 的 Q,G,F 矩阵用 Taylor 级数展开,由于每一小段长度非常小,对 于给定的有限数值 γ_{\pm}^{2} ,必然有该小段的计数 $J_{R} = 0$,这可以从非 常短结构的一阶特征值非常大的角度来理解。以此为出发点,重复 执行合并公式(8.2.2) N 次就可以得到此区段的 Q,G,F 矩阵及 其特征值计数 J_{R} ,然后以 η 长区段的混合能矩阵 Q,G,F 为起点再 执行合并公式(8.2.2),就得到了整个区间的解。

这里介绍一种利用矩阵指数函数 2^N 精细算法^[9] 计算基本区 段矩阵 *Q*,*G*,*F* 的方法,当然也属于精细积分体系。首先考察可以 导出 Riccati 微分方程(8.1.8) 的两端边值问题

 $\begin{bmatrix} \dot{x} \\ \dot{\lambda} \end{bmatrix} = \begin{bmatrix} \widetilde{A} & -(B_2 B_2^{\mathrm{T}} - \gamma^{-2} B_1 B_1^{\mathrm{T}}) \\ -\widetilde{C}^{\mathrm{T}} \widetilde{C} & -\widetilde{A}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} \quad (8.2.8)$ 其状态转移矩阵为

$$\boldsymbol{\Phi}(0,t) = \mathrm{e}^{Ht} \tag{8.2.9}$$

其中

第八章 连续系统 H_∞输出反馈控制

$$\boldsymbol{H} = \begin{bmatrix} \boldsymbol{\widetilde{A}} & -(\boldsymbol{B}_{2}\boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}}) \\ -\boldsymbol{\widetilde{C}}^{\mathrm{T}}\boldsymbol{\widetilde{C}} & -\boldsymbol{\widetilde{A}}^{\mathrm{T}} \end{bmatrix} \quad (8.2.10)$$

从而有

$$\begin{bmatrix} \mathbf{x}(t) \\ \boldsymbol{\lambda}(t) \end{bmatrix} = e^{\mathbf{H}} \begin{bmatrix} \mathbf{x}(0) \\ \boldsymbol{\lambda}(0) \end{bmatrix}$$
(8. 2. 11)

按照结构力学与最优控制的模拟关系,状态向量 x 对应于位移,协 态向量 λ 对应于内力。因此上式也可以认为是子结构链中位移与 内力的传递矩阵。

图 8.2 中的基本区段长度 $\eta = t_b - t_a$,其状态向量和协态向量 如图 8.4 中所示,并有如下关系式

$$\begin{bmatrix} \boldsymbol{x}(\eta) \\ \boldsymbol{\lambda}(\eta) \end{bmatrix} = e^{\boldsymbol{H}\eta} \begin{bmatrix} \boldsymbol{x}(0) \\ \boldsymbol{\lambda}(0) \end{bmatrix}$$
(8. 2. 12)

按文献 9 附录 B 中介绍的方法计算 e⁴⁷,计算结果可以表示为

$$\mathbf{e}^{\boldsymbol{H}\boldsymbol{\eta}} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \\ \mathbf{e}_3 & \mathbf{e}_4 \end{bmatrix}$$
(8. 2. 13)

其中 e_1 , e_2 , e_3 , e_4 均为n维方阵。现在根据这些条件计算图 8.3 中区段的混合能矩阵,根据前面给出的这些矩阵的力学意义,按下述步骤来确定。

为表述方便,下面将式(8.2.12)写成等价的矩阵形式。令区段左端为单位位移,右端无外力作用,即

 $\begin{bmatrix} \boldsymbol{X}(\boldsymbol{\eta}) \\ \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \\ \mathbf{e}_3 & \mathbf{e}_4 \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_n \\ \boldsymbol{\Lambda}(0) \end{bmatrix}$ (8. 2. 14)

而此时Q等于左端的力,F等于右端的位移,因此

 $\boldsymbol{Q} = \boldsymbol{\Lambda}(0) = -\, \mathbf{e}_4^{-1} \mathbf{e}_3 \qquad (8.2.15a)$

 $F = X(\eta) = \mathbf{e}_1 + \mathbf{e}_2 \Lambda(0) = \mathbf{e}_1 - \mathbf{e}_2 \mathbf{e}_4^{-1} \mathbf{e}_3 \quad (8. 2. 15b)$ 再令左端位移为 0,右端作用有单位力,则有

$$\begin{bmatrix} \boldsymbol{X}(\boldsymbol{\eta}) \\ -\boldsymbol{I}_n \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \\ \mathbf{e}_3 & \mathbf{e}_4 \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \boldsymbol{\Lambda}(0) \end{bmatrix}$$
(8. 2. 16)

此时,F^T等于左端的力,G等于右端的位移,因而

 $\boldsymbol{F}^{\mathrm{T}} = \boldsymbol{\Lambda}(0) = - \, \mathbf{e}_{4}^{-1} \qquad (8. \, 2. \, 17 \mathrm{a})$

 $G = X(\eta) = \mathbf{e}_2 \Lambda(0) = -\mathbf{e}_2 \mathbf{e}_4^{-1}$ (8.2.17b)

这样就可以求出基本区段的混合能矩阵 Q,G,F和 F^{T},F 和 F^{T} 还可以分别计算以互相校验。需要注意的是计算中基本区段长度的选取应保证特征值计数 $J_R = 0$ 。

8.3 算法与算例

(1) 选定初始参数 γ_{\circ}

(2)通过精细积分方法结合扩展 Wittrick-Williams 算法在检验两个 Riccati 方程解的存在性的同时求解该方程。只要有一个方程的解不存在,则减小参数 γ,再重复这一步。

(3)检验计算出的各个时刻 X(t),Y(t) 值是否符合谱半径条件。如果满足,γ是次优参数,可以减小。然后回到步骤 2 以寻求更接近最优值的参数。如果不满足条件,增大 γ值,然后回到步骤
 (2),再依次进行上面的步骤。

上述步骤结合二分法循环执行就可以找到满足给定的精度要求的最优 H_{∞} 范数 γ_{opt} ,并同时得到两个 Riccati 微分方程在区间 $[0, t_f]$ 上的解。对于无限时间问题,计算的步骤是类似的,只要将时间段取得足够长即可,因为这时 Riccati 微分方程的稳态解趋近于代数方程的解。当然对此类问题也可以利用已有的其他方法^[8]。

算例1:

系统参数为

$$\boldsymbol{A} = \begin{bmatrix} -0.08 & -3.0 & 0 & 2.0 & 0.5 \\ 0.04 & -1.4 & 10.0 & 0 & 0 \\ -0.01 & -4.0 & -2.8 & 0 & 0 \\ 0 & 0 & 1.0 & 0 & 0.3 \\ 0.2 & 0 & 0 & 0 & 0 \\ 0.2 & 0 & 0 & 0 & 0 \\ 0.2 & 0 & 0.3 & 0 & 0 \\ 0.001 & 0.4 & 0 & 0 & 0 \\ 0.5 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\boldsymbol{B}_{2} = \begin{bmatrix} 0 & & \\ -0.1 \\ -3.3 \\ 0 \\ 1.1 \end{bmatrix} \quad \boldsymbol{C}_{1} = \begin{bmatrix} 0.5 & 0 & 0 & -0.5 \\ 0 & 0 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0 \end{bmatrix}$$
$$\boldsymbol{C}_{2} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0 & 0 & 0.0 \end{bmatrix}$$
$$\boldsymbol{D}_{21} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \boldsymbol{D}_{12} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathrm{T}}$$

 $S_{\rm f} = I_5 \times 10^{-3}$ $P_0 = I_5 \times 10^{-3}$

用本章介绍的方法分别计算不同区间长度时的 7⁻²,结果列 于表 8-1 中。Riccati 微分方程的解也可以同时得到,这里不再列 出。由表 8-1 中的结果可见,随着区间长度的增加,结果趋于一个 定值。表 8-2 及表 8-3 则给出了不同区间长度时 X 矩阵在区间起点 和 Y 矩阵在区间终点的值。

$t_{ m f}$	$\gamma_{ m opt}^{-2}$
1	15.83928954386
2	2.541853646399
4	0.294541374346
8	0.085103281425
12	0.051969727045
16	0.041925137387
24	0.041409692712
32	0.041401008442
64	0.041400871246
128	0.041400871246

表 8-1 例 1 计算结果

表 8-2

算例 1 计算结果 —*X* 矩阵

t_{f}			X		
1	9.7295	- 2.7145	- 6.7603	13.1805	-17.0742
	- 2.7145	0.7855	1.8787	-3.6866	4.7608
	- 6.7603	1.8787	4.7865	-9.1851	11.8794
	13.1805	-3.6866	- 9.1851	17.9655	-23.1987
	- 17.0742	4.7608	11.8794	-23.1987	30.0238
2	12.6818	— 5.5999	-7.6220	49.8860	- 47.0077
	- 5.5999	2.5047	3.3597	-22.1304	20.8246
	-7.6220	3.3597	4.6673	-30.0165	28.2746
	49.8860	-22.1304	-30.0165	198.3223	-186.5238
	-47.0077	20.8246	28.2746	-186.5238	175.5724
4	0.3044	-0.1191	-0.1695	0.6578	-0.5183
	- 0.1191	0.0867	0.0562	- 0.4563	0.2879
	- 0.1695	0.0562	0.1813	-0.3317	0.2726
	0.6578	- 0.4563	-0.3317	4.5262	- 2.9517
	- 0.5183	0.2879	0.2726	- 2.9517	2.7687

第八章 连续系统 $H_{\circ\circ}$ 输出反馈控制

					(续表)
$t_{ m f}$			X		
8	0.3861	- 0.2600	- 0.1739	1.9539	- 0.2542
	- 0.2600	0.3346	0.0623	-2.7608	-0.1363
	- 0.1739	0.0623	0.1820	— 0.3774	0.2426
	1.9539	- 2.7608	- 0.3774	25.9364	1.1031
	- 0.2542	-0.1363	0.2426	1.1031	3.0780
12	0.3736	— 0.2455	-0.1701	1.8107	- 0.2314
	- 0.2455	0.3203	0.0568	-2.6151	- 0.1845
	- 0.1701	0.0568	0.1813	— 0.3256	0.2450
	1.8107	- 2.6151	- 0.3256	24.4587	1.5415
	- 0.2314	- 0.1845	0.2450	1.5415	3.2128
16	0.3665	- 0.2339	- 0.1694	1.7015	-0.2431
	- 0.2339	0.3008	0.0559	- 2.4305	-0.1612
	- 0.1694	0.0559	0.1811	— 0.3174	0.2444
	1.7015	- 2.4305	- 0.3174	22.7142	1.3228
	-0.2431	-0.1612	0.2444	1.3228	3.1682
24	0.3662	- 0.2334	-0.1694	1.6963	— 0.2436
	-0.2334	0.2999	0.0559	-2.4217	-0.1601
	- 0.1694	0.0559	0.1811	- 0.3170	0.2444
	1.6963	-2.4217	-0.3170	22.6311	1.3123
	- 0.2436	-0.1601	0.2444	1.3123	3.1660
32	0.3661	- 0.2334	-0.1694	1.6962	— 0.2437
	-0.2334	0.2998	0.0559	- 2.4215	-0.1601
	- 0.1694	0.0559	0.1811	-0.3170	0.2444
	1.6962	-2.4215	-0.3170	22.6297	1.3121
	-0.2437	-0.1601	0.2444	1.3121	3.1660
64	0.3661	- 0.2334	-0.1694	1.6962	— 0.2437
	-0.2334	0.2998	0.0559	-2.4215	-0.1601
	- 0.1694	0.0559	0.1811	-0.3170	0.2444
	1.6962	-2.4215	-0.3170	22.6297	1.3121
	-0.2437	-0.1601	0.2444	1.3121	3.1660

表	8-3
表	8-3

算例 1 计算结果 — Y 矩阵

$t_{ m f}$			Y		
1	0.1897	-0.0312	-0.0117	0.0985	0.7315
	- 0.0312	0.0153	0.0035	-0.0133	-0.0871
	-0.0117	0.0035	0.0065	-0.0086	- 0.0591
	0.0985	-0.0133	-0.0086	0.0566	0.4271
	0.7315	-0.0871	- 0.0591	0.4271	3.2708
2	1.3186	-0.0697	-0.0194	0.2723	2.4584
	- 0.0697	0.0150	0.0028	- 0.0145	-0.1133
	- 0.0194	0.0028	0.0057	- 0.0059	- 0.0434
	0.2723	- 0.0145	- 0.0059	0.0675	0.5714
	2.4584	-0.1133	-0.0434	0.5714	5.0282
4	1.8776	- 0.0529	-0.0188	0.2173	3.3478
	- 0.0529	0.0139	0.0024	-0.0100	- 0.0752
	-0.0188	0.0024	0.0055	-0.0043	- 0.0401
	0.2173	-0.0100	-0.0043	0.0485	0.4415
	3.3478	- 0.0752	-0.0401	0.4415	6.4996
8	1.9107	- 0.0559	-0.0199	0.2311	3.4970
	- 0.0559	0.0142	0.0025	-0.0113	- 0.0854
	- 0.0199	0.0025	0.0056	-0.0047	- 0.0445
	0.2311	-0.0113	-0.0047	0.0542	0.4894
	3.4970	-0.0854	-0.0445	0.4894	7.0724
12	1.9011	-0.0556	-0.0197	0.2296	3.4769
	-0.0556	0.0142	0.0025	-0.0113	-0.0847
	-0.0197	0.0025	0.0056	-0.0047	-0.0442
	0.2296	-0.0113	-0.0047	0.0542	0.4863
	3.4769	-0.0847	-0.0442	0.4863	7.0324
16	1.8981	- 0.0555	-0.0197	0.2290	3.4705
	- 0.0555	0.0142	0.0025	- 0.0113	- 0.0845
	-0.0197	0.0025	0.0056	- 0.0047	- 0.0441
	0.2290	-0.0113	-0.0047	0.0541	0.4851
	3.4705	- 0.0845	-0.0441	0.4851	7.0186
24	1.8980	- 0.0555	-0.0197	0.2290	3.4702
	- 0.0555	0.0142	0.0025	-0.0113	- 0.0845
	-0.0197	0.0025	0.0056	-0.0047	-0.0441

(续表)

t_{f}			Y		
	0.2290	-0.0113	-0.0047	0.0541	0.4851
	3.4702	- 0.0845	-0.0441	0.4851	7.0179
32	1.8980	- 0.0555	-0.0197	0.2290	3.4702
	- 0.0555	0.0142	0.0025	-0.0113	-0.0845
	-0.0197	0.0025	0.0056	-0.0047	-0.0441
	0.2290	-0.0113	-0.0047	0.0541	0.4851
	3.4702	- 0.0845	-0.0441	0.4851	7.0179
64	1.8980	- 0.0555	-0.0197	0.2290	3.4702
	- 0.0555	0.0142	0.0025	-0.0113	-0.0845
	-0.0197	0.0025	0.0056	-0.0047	-0.0441
	0.2290	-0.0113	-0.0047	0.0541	0.4851
	3.4702	- 0.0845	-0.0441	0.4851	7.0179

算例 2.

系统参数为

 $\boldsymbol{A} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \quad \boldsymbol{B}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \boldsymbol{B}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\boldsymbol{C}_{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \boldsymbol{C}_{2} = \begin{bmatrix} 1 & 1 \end{bmatrix} \quad \boldsymbol{D}_{12} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \boldsymbol{D}_{21} = \begin{bmatrix} 0 & 1 \end{bmatrix}$

在 t_i → ∞ 时,Riccati 微分方程的稳态解趋近于对应的Riccati 代数 方程的解,对于这个例题来说 $t_i \ge 40$ 已经足够。为了与别的计算 方法比较,本例将区间取足够长,使有限时间的解趋近于无限长时 间问题的解。表 8-4 中的计算结果与上面的结论是相符的,其中无 限时间 H_{∞} 输出反馈控制问题的结果利用 MATLAB 软件 μ 分析 与综合工具箱中的函数求解。用精细积分方法可以得到两个 Riccati 微分方程的解,同时得到临界参数为 γ_{mr}^{-2} = 0. 02559492983, 即该调节器问题的最优 H_{∞} 范数为 γ_{out} = 6.250619009。

表 8-4

例2计算结果

	利用 µ工具箱中的函数 (无限时间,代数方程的解)	利用精细积分方法 (有限时间 <i>T</i> = 45,微分方程的解)	
$\gamma_{ m opt}$	6.250619004	6.250619009	
V	0.3951657784 - 1.522487800	0.3951657783 - 1.522487800	
Λ	-1.522487800 6.329366877	-1.522487800 6.329366877	
V	$0.\ 4750729335 -\ 0.\ 7389003828$	$0.\ 4750729335 -\ 0.\ 7389003828$	
*	-0.7389003828 5.789347922	-0.7389003828 5.789347921	
$\rho(XY)$	39.07023794	39.07023794	

表 8-5 算例 2 计算结果 — Υ_{αντ}

$t_{ m f}$	$\gamma_{ m opt}$
1	1.79609779566
2	5.32718220178
3	6.18561223073
5	6.24919444265
10	6.25061895912
15	6.25061900945
20	6.25061900945
30	6.25061900945
40	6.25061900945
45	6.25061900945

图 8.5则给出了在 $\gamma_{opt} = 6.250619009$ 时,两个 Riccati 方程解 矩 阵的谱半径及其乘积矩阵的谱半径随时间变化的曲线。图中曲 线 1 为 $\rho(X)$ 与时间的关系,曲线 2 为 $\rho(Y)$ 与时间的关系,曲线 3 为 $\rho(XY)$ 与时间的关系。

为了更清楚地看出各设计参数随区间长度变化的规律,表8-5 和表8-6 分别给出了参数 γ_{opt} , *X* 矩阵在区间起点和 *Y* 矩阵在区间 终点的值。 表 8-6

算例 2 计算结果 — X 矩阵及 Y 矩阵

t_{f}		X		Y
1	0.5042	-2.0011	0.4837	- 0.7651
	-2.0011	8.4812	- 0.7651	4.8538
2	0.3990	-1.5380	0.4744	- 0.7454
	-1.5380	6.3942	- 0.7454	5.8435
3	0.3954	-1.5234	0.4750	- 0.7389
	-1.5234	6.3330	-0.7389	5.7917
5	0.3952	-1.5225	-1.5225	6.3294
	0.4751	- 0.7389	-0.7389	5.7894
10	0.3952	-1.5225	0.4751	-0.7389
	-1.5225	6.3294	-0.7389	5.7893
15	0.3952	-1.5225	0.4751	-0.7389
	-1.5225	6.3294	-0.7389	5.7893
20	0.3952	-1.5225	0.4751	-0.7389
	-1.5225	6.3294	-0.7389	5.7893
30	0.3952	-1.5225	0.4751	-0.7389
	-1.5225	6.3294	-0.7389	5.7893
40	0.3952	-1.5225	0.4751	— 0.7389
	-1.5225	6.3294	-0.7389	5.7893

目前 H_∞ 控制系统设计的软件包主要解决与 Riccati 代数方 程有关的问题,对需要求解 Riccati 微分方程的问题则难以处理。 结构力学与最优控制的模拟理论为研究解决这个问题提供了一条 新的途径。

本章介绍了精细积分方法求解有限时间 H_{∞} 输出反馈控制问题的过程,并将区间足够长时 Riccati 微分方程稳态解的计算结果与目前比较成熟算法的结果进行了比较,两者是一致的。对 H_{∞} 控制理论更详细的介绍可参考这方面的专著和相关文献 $1 \sim 2,10 \sim 13$ 。

参考文献

- 1 Green M , Limbeer D J N. Linear Robust Control. New Jersey: Prentice Hall, 1995
- 2 Burl J B. Linear Optimal Control -H₂ and H∞ Methods. California: Addison-Wesley Longman, 1998
- 3 Zhong W X. Variational method and computation for H_{∞} control. Applied Mathematics and Mechanics, 2000,21(12): 1407~1416
- 4 钟万勰. H_∞状态反馈与瑞利商精细积分. 计算力学学报, 1998, 15(4):
 1~8
- 5 Zhong W X, Williams F W. H_∞ filtering with secure eigenvalue calculation and precise integration. International Journal for Numerical Methods in Engineering, 1999,46: 1017~1030
- 6 钟万勰. H∞滤波器与特征值问题精细积分. 自然科学进展,2000,10
 (2): 116~121
- 7 Zhong W X, Williams F W, Bennett P N. Extension of the Wittrick-Williams algorithm to mixed variable systems. Journal of Vibration and Acoustics, $1997, 119(3): 334 \sim 340$
- 8 薛定宇. 控制系统计算机辅助设计——MATLAB 语言及应用. 北京. 清 华大学出版社,1996
- 9 钟万勰,欧阳华江,邓子辰.计算结构力学与最优控制.大连:大连理工

- 10 Doyle J C, Glover K, Khargonekar P, Francis B A. State-space solutions to standard H_2 and H_{∞} control problems. IEEE Transactions on Automatic Control, 1989,34(8): 831~847
- 11 Zhou K M, Doyle J C and Glover K. Robust and Optimal Control. New Jersey: Prentice Hall, 1996
- 12 Mills R A, Bryson A E. Calculus of variations derivation of the minimax Linear-Quadratic (H_∞) controller. Journal of Guidance, Control and Dynamics, 1994,17(1): 153~160
- Basar T, Bernhard P. H_∞-optimal Control and Related Minimax Design Problems. Boston: Birkhöuser,1995

第九章 分散 H_∞控制与滤波

分散控制是大系统理论中的一个重要分支,是解决大规模复 杂系统控制的一种有效的方法。大系统广泛存在于工程技术和社 会经济的诸多领域:例如对国家安全具有重要意义的空间站、航天 飞机等大型航天器、大型预警雷达网及快速反击武器系统;对经济 发展至关重要的大型电力网、大型通讯网络系统、工业机器人等。 由于构成大系统的基本单元数量众多、结构层次复杂、信息采集处 理量巨大,使得大系统的建模、分析及控制都非常复杂,对大系统 采用集中式的控制模式通常非常困难,甚至无法实现,因此需要采 用分散控制或递阶控制等方案以确保系统的稳定运行及性能指标 的优化。在此基础上,还要求控制系统具备鲁棒性、自适应性、故障 诊断及容错能力等一系列智能控制特性,这是复杂大系统控制的 发展趋势^{[1][2]}。

本书前面的章节已经介绍了离散及连续 H_∞控制和 H_∞滤波 系统设计的理论与计算方法。本章则进一步基于结构力学中的模 态综合法研究分散 H_∞控制系统的范数计算问题,并将这一方法 用于研究其对偶问题——分散 H_∞滤波问题。

9.1 大系统分散 H_∞ 控制

 H_{∞} 鲁棒控制理论与分散控制技术相结合在解决大系统的干扰 抑制、可靠控制等问题方面有其特定的优势^[3~5]。从实际控制系统设计的角度讲,闭环控制系统最优参数 γ_{opt}^{-2} 的确定(即系统最优 范数 γ_{opt} 的确定) 是应当首先考虑的问题。本书前面已经介绍过,

线性二次(LQ) 控制以及 Kalman-Bucy 滤波与结构静力学互相模 拟^[6]; H_{∞} 控制及 H_{∞} 滤波的临界参数 γ_{opt}^{-2} 与结构力学中振动问题 的一阶特征值互相对应^[7~9];本章的内容则进一步表明结构力学 中的动力子结构分析对应于分散 H_{∞} 控制和滤波问题。

首先考虑状态反馈 H.。控制问题。设大系统的状态方程为

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}_1 \boldsymbol{w} + \boldsymbol{B}_2 \boldsymbol{u} \tag{9.1.1}$$

$$\boldsymbol{z} = \boldsymbol{C}\boldsymbol{x} + \boldsymbol{D}\boldsymbol{u} \tag{9.1.2}$$

其中 x 是 n 维状态向量, u 是 m_2 维控制向量, w 是 m_1 维过程干扰噪 声向量, 矩阵 A, B_1, B_2, C, D 具有恰当的维数。设 $(A, B_1), (A, B_2)$ 可控, 且

$$\boldsymbol{D}^{\mathrm{T}}\boldsymbol{D} = \boldsymbol{I}_{m_{\mathrm{o}}} \tag{9.1.3a}$$

$$\boldsymbol{C}^{\mathrm{T}}\boldsymbol{D} = \boldsymbol{0} \tag{9.1.3b}$$

有限时间段 $[0,t_f]$ 上的 H_{∞} 控制问题可以归结为下列变分问题:

$$\|\mathscr{G}\|^{2} = \max_{\mathbf{w}} \min_{\mathbf{u}} \frac{\int_{0}^{t_{\mathrm{f}}} \mathbf{z}^{\mathrm{T}} \mathbf{z} \mathrm{d}t + \mathbf{x}^{\mathrm{T}}(t_{\mathrm{f}}) \mathbf{S}_{\mathrm{f}} \mathbf{x}(t_{\mathrm{f}})}{\int_{0}^{t_{\mathrm{f}}} \mathbf{w}^{\mathrm{T}} \mathbf{w} \mathrm{d}t} \qquad (9.1.4)$$

其中 || \mathscr{G} || 是闭环系统的 H_{∞} 范数, S_{f} 是半正定矩阵,下标 f 表示 在 $t = t_{f}$ 处取值。利用条件(9.1.3),可将其中的二次指标进一步表 示为

$$J = \frac{1}{2} \int_{0}^{t_{\mathrm{f}}} (\boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x} + \boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}) \mathrm{d}t + \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} (t_{\mathrm{f}}) \boldsymbol{S}_{\mathrm{f}} \boldsymbol{x} (t_{\mathrm{f}}) \quad (9.1.5)$$

以上是对整个大系统集中控制问题的描述。分散控制技术则 是将大系统的状态向量 x 分解为 p 个状态子向量 x_i , $i = 1, 2, \dots, p$ 之直和,它们互不相交。通过分别对 p 个子系统进行控制来实现大 系统的控制目标^[1~5]。此时任一子系统的状态方程可表示为

$$\dot{\boldsymbol{x}}_i = \boldsymbol{A}_{ii}\boldsymbol{x}_i + \boldsymbol{B}_{1,ii}\boldsymbol{w}_i + \boldsymbol{B}_{2,ii}\boldsymbol{u}_i + \sum_{j\neq i}^p \boldsymbol{A}_{ij}\boldsymbol{x}_j \qquad (9.1.6)$$

 $\boldsymbol{z}_i = \boldsymbol{C}_{ii} \boldsymbol{x}_i + \boldsymbol{D}_{ii} \boldsymbol{u}_i \tag{9.1.7}$

其中矩阵 A_{ij} 表示子系统之间的联系,还可以表示为 $A_{ij} = M_i L_{ij} H_j (i \neq j)$,而 $L_{ij}^{T} L_{ij} < I_{\circ}$ 另外要求 $(A_{ii}, B_{2,ii})$, $(A_{ii}, B_{1,ii})$ 可控, $D_{ii}^{T} D_{ii} = I 且 C_{ii}^{T} D_{ii} = 0$ 。

对于无限时间域的分散 H_{∞} 控制问题,文献3 给出了下列控制 方案:对预先给定的常数 $\gamma > 0$,如果存在常数 $\eta_i > 0$ 使得"局 部"Riccati 方程

 $\boldsymbol{A}_{ii}^{\mathrm{T}}\boldsymbol{P}_{i} + \boldsymbol{P}_{i}\boldsymbol{A}_{ii} - \boldsymbol{P}_{i}(\boldsymbol{B}_{2,ii}\boldsymbol{B}_{2,ii}^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_{1,ii}\boldsymbol{B}_{1,ii}^{\mathrm{T}})\boldsymbol{P}_{i} + \boldsymbol{C}_{ii}^{\mathrm{T}}\boldsymbol{C}_{ii} +$

 $\eta_i \boldsymbol{P}_i \boldsymbol{M}_i \boldsymbol{M}_i^{\mathrm{T}} \boldsymbol{P}_i + \left(\sum_{j \neq i}^{p} \frac{1}{\eta_j}\right) \boldsymbol{H}_i^{\mathrm{T}} \boldsymbol{H}_i + \boldsymbol{Q}_i = \boldsymbol{0}$ (9.1.8)

存在对称正定解 $P_i(i = 1, 2, \dots, p)$,其中 Q_i 是给定的正定矩阵,则 由式(9.1.6)、(9.1.7)构成的大系统是分散可镇定的,且闭环大 系统的 H_∞ 范数小于 γ_s 各子系统的局部状态反馈增益矩阵为

 $\boldsymbol{K}_i = -\boldsymbol{B}_{2,ii}^{\mathrm{T}} \boldsymbol{P}_i \qquad (9.1.9)$

大系统的 H... 范数则定义为

 $\|\mathscr{H}(s)\|_{\infty} = \|(C + DK)(sI - \overline{A})^{-1}B_1\|_{\infty}$ 其中

$$\overline{A} = A + B_2 K$$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1\rho} \\ A_{21} & A_{22} & \vdots & A_{2\rho} \\ \vdots & \vdots & \ddots & \vdots \\ A_{\rho 1} & \cdots & \cdots & A_{\rho \rho} \end{bmatrix}$$

$$B_2 = \operatorname{diag}[B_{2,11}, B_{2,22}, \cdots, B_{2,\rho \rho}]$$

$$B_1 = \operatorname{daig}[B_{1,11}, B_{1,22}, \cdots, B_{1,\rho \rho}]$$

$$C = \operatorname{diag}[C_{11}, C_{22}, \cdots, C_{\rho \rho}]$$

$$D = \operatorname{diag}[D_{11}, D_{22}, \cdots, D_{\rho \rho}]$$

$$K = \operatorname{diag}[K_1, K_2, \cdots, K_{\rho}]$$

目前分散 H_{∞} 控制问题的解法大都基于上述类型的代数 Riccati 方程^[3,4,5],虽然 Q_i 并不影响此问题的可解性条件^[3],但对 于复杂大规模系统,确定这一系列方程的可解性条件以及系统在 分散控制器作用下的最优 H_{∞} 范数比较困难。本章从有限时间控 制问题出发,基于结构力学与最优控制的模拟关系,利用 Hamilton 系统的模态综合法计算 H_{∞} 分散控制系统的临界参数 γ_{opt}^{-2} 。

为简单起见,设p = 2,则系统矩阵及向量也相应地成为分块形式:

$oldsymbol{x} = egin{bmatrix} oldsymbol{x}_1 \ oldsymbol{x}_2 \end{bmatrix}$	(9.1.10a)
$oldsymbol{z} = egin{bmatrix} oldsymbol{z}_1 \ oldsymbol{z}_2 \end{bmatrix}$	(9.1.10b)
$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$	(9.1.10c)
$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$	(9.1.10d)
$oldsymbol{A} = egin{bmatrix} oldsymbol{A}_{11} & arepsilonoldsymbol{A}_{12} \ arepsilonoldsymbol{A}_{21} & oldsymbol{A}_{22} \end{bmatrix}$	(9.1.11a)
$\boldsymbol{B}_2 = \begin{bmatrix} \boldsymbol{B}_{2,11} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{B}_{2,22} \end{bmatrix}$	(9.1.11b)
$\boldsymbol{B}_1 = \begin{bmatrix} \boldsymbol{B}_{1,11} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{B}_{1,22} \end{bmatrix}$	(9.1.11c)
$\boldsymbol{C} = \begin{bmatrix} \boldsymbol{C}_{11} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{22} \end{bmatrix}$	(9.1.11d)
$oldsymbol{D} = egin{bmatrix} oldsymbol{D}_{11} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{D}_{22} \end{bmatrix}$	(9.1.11e)

从上述公式可以看出,除了A阵的分块中有带参数的子块外, 其他的项对于两个状态子向量 x_1, x_2 的方程都是分立的,将式 (9.1.6)及(9.1.7)代入方程(9.1.1)~(9.1.4)可得

 $\dot{\mathbf{x}}_{1} = \mathbf{A}_{11}\mathbf{x}_{1} + \varepsilon \mathbf{A}_{12}\mathbf{x}_{2} + \mathbf{B}_{1,11}\mathbf{w}_{1} + \mathbf{B}_{2,11}\mathbf{u}_{1} \quad (9. \ 1. \ 12a)$ $\mathbf{z}_{1} = \mathbf{C}_{11}\mathbf{x}_{1} + \mathbf{D}_{11}\mathbf{u}_{1} \quad (9. \ 1. \ 12b)$ $\dot{\mathbf{x}}_{2} = \mathbf{A}_{22}\mathbf{x}_{2} + \varepsilon \mathbf{A}_{21}\mathbf{x}_{1} + \mathbf{B}_{1,22}\mathbf{w}_{2} + \mathbf{B}_{2,22}\mathbf{u}_{2} \quad (9. \ 1. \ 13a)$

$$\boldsymbol{z}_2 = \boldsymbol{C}_{22}\boldsymbol{x}_2 + \boldsymbol{D}_{22}\boldsymbol{u}_2 \qquad (9.1.13b)$$

如果取 $\varepsilon = 0$,则所得的方程组表明这是两个完全独立的系统,这 里所采用的子系统之间的联系形式与式(9.1.6)、(9.1.7)中略有 不同。含 ε 项将两个子系统联系在一起,在分析时可以先将它们独 立分析,然后再把它们通过含 ε 的项联系在一起,而且 ε 不必一定 是小参数。

文献 7 采用精细积分法求解 H_{∞} 控制的临界最优参数值 γ_{opt}^{-2} , 即一阶特征值,利用精细积分还可以进一步求解 H_{∞} 控制的全部 特征解[$\gamma_j^{-2}, \varphi_j(t)$](j = 1, 2, 3, ...),其中 $\varphi_j(t)$ 是无穷多个特征 函数。 $\varphi_j(t)$ 是定义于区间[$0, t_f$]上的向量函数,组成此向量的向 量 x_{qj} 和 λ_{qj} 则分别构成状态向量 x 及其对偶向量 λ 的正交基,这相 当于结构振动的振型。

精细积分首先用于初值问题的积分^[10~12],随后又推广到两点 边值问题^[13~15],而与两点边值问题密切相关的 Riccati 微分方程 也可由此法求解。本章中特征解的计算也采用这种方法。求解了子 系 统的特征解后,对全系统的分析可采用子系统特征解的综合方 法^[16,17],因此分散 *H*[∞] 控制系统最优参数的计算与结构动力分析 的模态综合法是一致的。

9.2 H_{∞} 控制子系统的特征解

将大系统分解为各个子系统,并取 $\varepsilon = 0$,则各个子系统之间

的耦合解除。对其中的任一个子系统,省略其编号下标,则可用式 (9.1.1)、(9.1.2) 描述,而问题的变分形式为

$$\|\mathscr{G}\|^{2} = \max_{\mathbf{w}} \min_{\mathbf{u}} \frac{\int_{0}^{t_{\mathrm{f}}} \mathbf{z}^{\mathrm{T}} \mathbf{z} dt + \mathbf{x}^{\mathrm{T}}(t_{\mathrm{f}}) \mathbf{S}_{\mathrm{f}} \mathbf{x}(t_{\mathrm{f}})}{\int_{0}^{t_{\mathrm{f}}} \mathbf{w}^{\mathrm{T}} \mathbf{w} dt} \qquad (9.2.1)$$

其中 S_f 是给定的半正定矩阵。问题成为方程(9.1.1)和(9.1.2)约束下的极小-极大问题。第七章中已经介绍过这一问题。

对约束方程(9.1.1) 引入 Lagrange 向量乘子函数 $\lambda(t)$,并将 式(9.1.2) 代入。对向量 u 和 w 取极值并考虑到式(9.1.3) 得 $u = -B_2^T \lambda$ (9.2.2)

$$\boldsymbol{w} = \boldsymbol{\gamma}^{-2} \boldsymbol{B}_{1}^{\mathrm{T}} \boldsymbol{\lambda} \tag{9.2.3}$$

其中 $\gamma = \| \mathscr{G} \|_{\circ}$ 对于任一个参数 γ^{-2} ,消去 u 和 w 给出

$$J = \int_{0}^{t_{\rm f}} \left(-\lambda^{\rm T} \dot{\mathbf{x}} + \lambda^{\rm T} A \mathbf{x} + \frac{1}{2} \gamma^{-2} \lambda^{\rm T} B_1 B_1^{\rm T} \lambda - \frac{1}{2} \lambda^{\rm T} B_2 B_2^{\rm T} \lambda + \frac{1}{2} \mathbf{x}^{\rm T} C^{\rm T} C \mathbf{x} \right) dt + \frac{1}{2} \mathbf{x}^{\rm T} (t_{\rm f}) \mathbf{S}_{\rm f} \mathbf{x} (t_{\rm f})$$

$$(9.2.4)$$

完成变分运算得到对偶微分方程

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} - (\boldsymbol{B}_2\boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_1\boldsymbol{B}_1^{\mathrm{T}})\boldsymbol{\lambda}$$
 (9.2.5a)

$$\dot{\boldsymbol{\lambda}} = -\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{x} - \boldsymbol{A}^{\mathrm{T}}\boldsymbol{\lambda} \qquad (9.2.5\mathrm{b})$$

对应的边界条件为

$$\mathbf{x}(0) = \mathbf{x}_0$$
 (9.2.6a)

$$\boldsymbol{\lambda}(t_{\rm f}) = \boldsymbol{S}_{\rm f} \boldsymbol{x}(t_{\rm f}) \tag{9.2.6b}$$

其中 x_0 是给定向量,即初始状态。定义系统(9.2.5)和(9.2.6)的 全状态向量为

$$\mathbf{v}(t) = \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{\lambda}(t) \end{bmatrix}$$
(9.2.7)

由边界条件(9.2.6b)可知线性对偶微分方程(9.2.5)的解有

下列关系:

$$\boldsymbol{\lambda}(t) = \mathbf{S}(t)\boldsymbol{x}(t) \tag{9.2.8}$$

其中S(t)是一个 $n \times n$ 对称矩阵,将其代入对偶微分方程(9.2.5) 给出

 $\dot{\mathbf{S}} = -\mathbf{C}^{\mathrm{T}}\mathbf{C} - \mathbf{A}^{\mathrm{T}}\mathbf{S} - \mathbf{S}\mathbf{A} + \mathbf{S}(\mathbf{B}_{2}\mathbf{B}_{2}^{\mathrm{T}} - \gamma^{-2}\mathbf{B}_{1}\mathbf{B}_{1}^{\mathrm{T}})\mathbf{S}, \mathbf{S}(t_{\mathrm{f}}) = \mathbf{S}_{\mathrm{f}}$ (9.2.9)

 $\dot{\boldsymbol{x}} = [\boldsymbol{A} - (\boldsymbol{B}_2 \boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{B}_1 \boldsymbol{B}_1^{\mathrm{T}}) \boldsymbol{S}] \boldsymbol{x}, \boldsymbol{x}(0) = \boldsymbol{x}_0 \quad (9. \ 2. \ 10)$

方程(9.2.9)就是 Riccati 微分方程,求解 $n \times n$ 矩阵 S(t)后,状态向量x(t)可以通过向前逐步积分时变微分方程(9.2.10)而获得。

上述问题中 Riccati 微分方程(9.2.9) 的求解是关键一步。标 准 H_{∞} 控制问题要求参数 γ^{-2} 一定是次优的,即 $\gamma^{-2} > \gamma_{opt}^{-2}$,其中 $\gamma_{opt}^{-2} = \gamma_{1}^{-2}$ 为一阶特征值,此时解矩阵 S(t) 在区间[0, t_{f}]内可以保 证不出现无穷大。但当前的问题需要全部特征值 $\gamma_{j}^{-2}(j = 1, 2, \cdots)$ 及相应的特征函数向量 $\varphi_{j}(t)$,至少要有前 n_{e} 阶特征解。此时 $S_{j}(t)$ 在整个时间段[0, t_{f}]内会出现无穷大,这里 $S_{j}(t)$ 是对应于 $\gamma_{j}^{-2}(j$ = 1,2,…)的 Riccati 微分方程的解矩阵, $S_{j}(t)$ 在力学上的解释是 刚度阵,当参数 γ^{-2} 超过基本特征值 $\gamma_{opt}^{-2} = \gamma_{1}^{-2}$ 时,在[0, t_{f}]内必然 出现无穷大,但特征函数向量 $\varphi_{j}(t)$ 不会出现无穷大问题。

变分原理(9.2.4)可以改写为

$$\delta(\Pi_1 - \gamma^{-2}\Pi_2) = 0 \tag{9.2.11}$$

其中

$$\Pi_{1} = \int_{0}^{t_{\mathrm{f}}} \left[\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B}_{2} \boldsymbol{B}_{2}^{\mathrm{T}} \boldsymbol{\lambda} - \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x} \right] \mathrm{d}t - \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} (t_{\mathrm{f}}) \boldsymbol{S}_{\mathrm{f}} \boldsymbol{x}(t_{\mathrm{f}})$$
(9.2.12)

$$\boldsymbol{\varPi}_{2} = \frac{1}{2} \int_{0}^{t_{\mathrm{f}}} [\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\mathrm{T}} \boldsymbol{\lambda}] \mathrm{d}t \qquad (9.2.13)$$

变分方程(9.2.11) 可以写为

$$\gamma^{-2} = \min_{\lambda} \max_{\mathbf{x}} \frac{\Pi_1}{\Pi_2} \tag{9.2.14}$$

这是广义 Rayleigh 商,其中有两类变量 $x \le \lambda$ 参与变分。当矩阵 C是满秩时,广义 Rayleigh 商可以退化为常见的 Rayleigh 商。但在 最优控制问题中,矩阵 C 常常不是满秩的,此时系统的可控性与可 观性保证了广义 Rayleigh 商的存在。

运用精细积分法再结合扩展的 Wittrick-Williams 算法^[18],可 以将任意 n_e 个特征值计算到选择的精度。文献 7 给出的算法只计 算最低阶特征值,且未给出相应的特征函数向量 $\varphi_1(t)$,不能适合 当前问题的需要。分散控制需要对各个子系统作出分析,即令 $\varepsilon =$ 0,求解各子系统前 n_e 阶特征解[$\gamma_j^{-2}, \varphi_j(t)$]($j = 1, 2, \dots, n_e$),在此 基础上考虑子系统间的耦合条件(此时 $\varepsilon > 0$),并按照模态综合法 计 算整个系统的最优范数。综合全部分散子系统的特征解以获得 整体大系统的特征值,这在结构力学的动力分析中有相似的情况, 称为子结构模态综合法^[16,17]。

当前所考虑的状态反馈控制问题解的形式是 $\lambda(t) = S(t)x(t)$,两端齐次边界条件为

x(0) = 0 (9.2.15a)

 $\boldsymbol{\lambda}(t_{\rm f}) = \boldsymbol{S}_{\rm f} \boldsymbol{x}(t_{\rm f}) \qquad (9.2.15 \rm b)$

如果 γ^{-2} 不是特征值,则 Riccati 矩阵 S(0)(即刚度矩阵)并不是无 穷大,对偶微分方程满足齐次边界条件(9.2.15)的解只有平凡 解。然而当 γ^{-2} 的取值是特征值 γ_{j}^{-2} 时,S(0) 将是数值非常大的奇 异矩阵。据此可以找到非零向量 $\lambda(0)$ 对应于边界条件(9.2.15)。 然后由 $x(0),\lambda(0)$ 开始,利用 2^{N} 算法可将全状态的特征函数向量 计算出来。即

$$\boldsymbol{\gamma}_{j}^{-2}, \boldsymbol{\varphi}_{j}(t) = \begin{cases} \boldsymbol{x}_{\varphi j}(t) \\ \boldsymbol{\lambda}_{\varphi i}(t) \end{cases}, (j = 1, 2, 3, \cdots) \qquad (9. \ 2. \ 16) \end{cases}$$

其中下标 φ 表示 $\mathbf{x}_{\varphi_i}(t)$, $\lambda_{\varphi_i}(t)$ 是向量 $\boldsymbol{\varphi}_i(t)$ 的组成部分, j 表示阶

次。

通过精细积分与扩展 Wittrick-Williams 算法的结合使用,可 以将给定范围 $0 < \gamma_j^{-2} < \gamma_{\pm}^{-2}$ 内的特征解全部找出,这里 γ_{\pm}^{-2} 是预 先给定的一个值。得到全部特征解后,任意初值条件与任意参数 $\gamma^{-2} < \gamma_{opt}^{-2}$ 的全状态向量就可以用全状态的特征向量函数 (9.2.16)展开来表示。

9.3 特征解的正交归一性、 完备性及展开定理

结构振动问题中特征向量展开是一种基本的求解方法,其前 提是特征向量的正交性和完备性。结构振动问题是 Rayleigh 商特 征值问题,属于 Lagrange 体系,但 H_{∞} 控制是广义 Rayleigh 商特 征值问题,属于 Hamilton 体系,其正交性应当重新考察。这里所讨 论的特征值问题的特征函数显然满足下列特性。

$$\int_{0}^{t_{i}} \boldsymbol{\varphi}_{i}^{\mathrm{T}}(t) \left[\boldsymbol{J} \left[\frac{\mathrm{d}}{\mathrm{d}t} + \boldsymbol{H} \right] \right] \boldsymbol{\varphi}_{j}(t) \mathrm{d}t = 0 \qquad (9.3.1)$$

其中

$$J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$$
(9.3.2a)

$$\boldsymbol{H} = \begin{bmatrix} -\boldsymbol{A} & \boldsymbol{B}_2 \boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}^{-2} \boldsymbol{B}_1 \boldsymbol{B}_1^{\mathrm{T}} \\ \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} & \boldsymbol{A}^{\mathrm{T}} \end{bmatrix}$$
(9. 3. 2b)

下面基于上述关系给出更具体的结果。设有两个特征解 $\varphi_i(t) = \varphi_i(t)$, 它们分别满足方程

$$\dot{\boldsymbol{\varphi}}_i(t) + \boldsymbol{H}\boldsymbol{\varphi}_i(t) = \boldsymbol{0} \tag{9.3.3a}$$

$$\dot{\boldsymbol{\varphi}}_{j}(t) + \boldsymbol{H}\boldsymbol{\varphi}_{j}(t) = \mathbf{0}$$
 (9.3.3b)

即

$$\dot{\boldsymbol{x}}_{\varphi_i} = \boldsymbol{A} \boldsymbol{x}_{\varphi_i} - (\boldsymbol{B}_2 \boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}_i^{-2} \boldsymbol{B}_1 \boldsymbol{B}_1^{\mathrm{T}}) \boldsymbol{\lambda}_{\varphi_i} \qquad (9. \ 3. \ 4a)$$

$$\dot{\boldsymbol{\lambda}}_{\varphi_i} = -\boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x}_{\varphi_i} - \boldsymbol{A}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi_i} \qquad (9. \ 3. \ 4\mathrm{b})$$

$$\dot{\boldsymbol{x}}_{\varphi j} = \boldsymbol{A} \boldsymbol{x}_{\varphi j} - (\boldsymbol{B}_2 \boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}_j^{-2} \boldsymbol{B}_1 \boldsymbol{B}_1^{\mathrm{T}}) \boldsymbol{\lambda}_{\varphi j}$$
 (9.3.5a)

 $\dot{\boldsymbol{\lambda}}_{\varphi j} = -\boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x}_{\varphi j} - \boldsymbol{A}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi j} \qquad (9.3.5\mathrm{b})$

和(9.2.6)中给定的齐次边界条件。将 $\lambda_{\varphi_{j}}^{T}$ 左乘式(9.3.4a), $x_{\varphi_{j}}^{T}$ 左 乘式(9.3.4b),按照(9.3.1)式,将两者相减后对[0, t_{f}]全区段积 分,运用分部积分法,并注意到 $\lambda_{\varphi_{i}}(t_{f}) = S_{f}x_{\varphi_{i}}(t_{f})$,可导出

$$\int_{0}^{t_{f}} [\boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{i}} + \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{j}} - \boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{\varphi_{i}} - \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{\varphi_{j}} + \boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} (\boldsymbol{B}_{2} \boldsymbol{B}_{2}^{\mathrm{T}} - \boldsymbol{\gamma}_{i}^{-2} \boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\mathrm{T}}) \boldsymbol{\lambda}_{\varphi_{i}} - \boldsymbol{x}_{\varphi_{j}}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x}_{\varphi_{i}}] \mathrm{d}t - \boldsymbol{x}_{\varphi_{j}}^{\mathrm{T}} (t_{\mathrm{f}}) \boldsymbol{S}_{i} \boldsymbol{x}_{\varphi_{i}} (t_{\mathrm{f}}) = 0$$

$$(9, 3, 6)$$

上式就是(9.3.1)式所表述的特征函数正交性的具体形式。将 $\lambda_{\varphi_i}^{T}$ 左乘式(9.3.5a), $\mathbf{x}_{\varphi_i}^{T}$ 左乘式(9.3.5b),相减后再对[0, t_f]全区段积 分,运用分部积分法,并注意到 $\lambda_{\varphi_i}(t_f) = S_f \mathbf{x}_{\varphi_i}(t_f)$,又可导出

 $\int_{0}^{t_{i}} [\boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{i}} + \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{j}} - \boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{\varphi_{i}} - \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{\varphi_{j}} + \boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} (\boldsymbol{B}_{2} \boldsymbol{B}_{2}^{\mathrm{T}} -$

 $\gamma_{j}^{-2}\boldsymbol{B}_{1}\boldsymbol{B}_{1}^{\mathrm{T}})\lambda_{\varphi_{i}} - \boldsymbol{x}_{\varphi_{j}}^{\mathrm{T}}\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{x}_{\varphi_{i}}]dt - \boldsymbol{x}_{\varphi_{j}}^{\mathrm{T}}(t_{\mathrm{f}})\boldsymbol{S}_{\mathrm{f}}\boldsymbol{x}_{\varphi_{i}}(t_{\mathrm{f}}) = 0 \quad (9.3.7)$ 两者相减得到

$$(\boldsymbol{\gamma}_{i}^{-2} - \boldsymbol{\gamma}_{j}^{-2}) \int_{0}^{t_{f}} \boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} \boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi_{i}} \mathrm{d}t = 0 \qquad (9.3.8)$$

上式就是特征函数对于非负对称矩阵 $B_1B_1^T$ 的正交性定理:对于不同的特征值 $\gamma_t^{-2} = \gamma_t^{-2}$,相应的全状态特征函数 $\varphi_t(t)$ 和 $\varphi_t(t)$ 对于 非负对称矩阵 $B_1B_1^T$ 是正交的。这与结构振动中特征向量对于质量 阵的正交类似。而归一化条件则可以表示为

$$\frac{1}{2} \int_{0}^{t_{i}} \left[\boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi_{i}} \right] \mathrm{d}t = 1$$
(9.3.9)

运用该正交性结果,由(9.3.6)得到

$$\int_{0}^{t_{f}} [\boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{i}} + \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{j}} - \boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{\varphi_{i}} - \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{\varphi_{j}} + \boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}} \boldsymbol{B}_{2} \boldsymbol{B}_{2}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi_{i}} - \mathbf{x}_{\varphi_{j}}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \mathbf{x}_{\varphi_{i}}] dt - \mathbf{x}_{\varphi_{j}}^{\mathrm{T}} (t_{f}) \boldsymbol{S}_{f} \mathbf{x}_{\varphi_{i}} (t_{f}) = 0$$

$$(9.3.10)$$

这与结构振动时特征向量对于刚度阵的正交类似。由归一化条件 (9.3.9),又有

$$\int_{0}^{t_{\mathrm{f}}} \left[\boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{i}} - \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \boldsymbol{A}_{\boldsymbol{x}_{\varphi_{i}}} + \frac{1}{2} \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \boldsymbol{B}_{2} \boldsymbol{B}_{2}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi_{i}} - \frac{1}{2} \boldsymbol{x}_{\varphi_{i}}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C}_{\boldsymbol{x}_{\varphi_{i}}} \right] \mathrm{d}t - \frac{1}{2} \boldsymbol{x}_{\varphi_{i}}^{\mathrm{T}} (t_{\mathrm{f}}) \boldsymbol{S}_{\mathrm{f}} \boldsymbol{x}_{\varphi_{i}} (t_{\mathrm{f}}) = \boldsymbol{\gamma}_{i}^{-2}$$

$$(9.3.11)$$

特征函数的完备性参照文献 20 中的证明步骤在这里给出。由 方程(9.2.5)的矩阵形式

 $\begin{bmatrix} -\dot{x} \\ -\dot{\lambda} \end{bmatrix} + \begin{bmatrix} A & -B_2 B_2^{\mathrm{T}} + \gamma^{-2} B_1 B_1^{\mathrm{T}} \\ -C^{\mathrm{T}} C & -A^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = 0 \quad (9.3.12)$ 可以定义下列算子

$$\mathscr{L} = -I \frac{\mathrm{d}}{\mathrm{d}t} + \begin{bmatrix} A & -B_2 B_2^{\mathrm{T}} \\ -C^{\mathrm{T}} C & -A^{\mathrm{T}} \end{bmatrix}$$
(9.3.13a)
$$\mathscr{M} = \begin{bmatrix} \mathbf{0} & -B_1 B_1^{\mathrm{T}} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$
(9.3.13b)

再根据式(9.2.12)及(9.2.13),对任意全状态向量函数 $v(t) = [x_v^T, \lambda_v^T]^T$ 及 $\theta(t) = [x_\theta^T, \lambda_\theta^T]^T$ 定义下列二次型泛函

$$\Pi_{1}(\boldsymbol{\nu},\boldsymbol{\theta}) = \frac{1}{2} \int_{0}^{t_{\mathrm{f}}} \boldsymbol{\nu}^{\mathrm{T}}(\boldsymbol{J}\mathscr{L})\boldsymbol{\theta} \mathrm{d}t = \frac{1}{2} \int_{0}^{t_{\mathrm{f}}} \begin{bmatrix} \boldsymbol{x}_{v} \\ \boldsymbol{\lambda}_{v} \end{bmatrix}^{\mathrm{I}} (\boldsymbol{J}\mathscr{L}) \begin{bmatrix} \boldsymbol{x}_{\theta} \\ \boldsymbol{\lambda}_{\theta} \end{bmatrix} \mathrm{d}t = \frac{1}{2} \int_{0}^{t_{\mathrm{f}}} \begin{bmatrix} \boldsymbol{\lambda}_{v}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\theta} + \boldsymbol{\lambda}_{\theta}^{\mathrm{T}} \dot{\boldsymbol{x}}_{v} - \boldsymbol{\lambda}_{v}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{\theta} - \boldsymbol{\lambda}_{\theta}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{v} + \boldsymbol{\lambda}_{v}^{\mathrm{T}} \boldsymbol{B}_{2} \boldsymbol{B}_{2}^{\mathrm{T}} \boldsymbol{\lambda}_{\theta} - \mathbf{x}_{v}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x}_{v} \end{bmatrix} \mathrm{d}t - \frac{1}{2} \mathbf{x}_{v}^{\mathrm{T}} (t_{\mathrm{f}}) \mathbf{S}_{\mathrm{f}} \boldsymbol{x}_{\theta} (t_{\mathrm{f}})$$

$$(9.3.14a)$$

及

$$\Pi_{2}(\boldsymbol{\nu},\boldsymbol{\theta}) = \frac{1}{2} \int_{0}^{t_{f}} \boldsymbol{\nu}^{\mathrm{T}}(\boldsymbol{J}\mathcal{M})\boldsymbol{\theta} \mathrm{d}t = \frac{1}{2} \int_{0}^{t_{f}} \begin{bmatrix} \boldsymbol{x}_{v} \\ \boldsymbol{\lambda}_{v} \end{bmatrix}^{1} (\boldsymbol{J}\mathcal{M}) \begin{bmatrix} \boldsymbol{x}_{\theta} \\ \boldsymbol{\lambda}_{\theta} \end{bmatrix} \mathrm{d}t = \frac{1}{2} \int_{0}^{t_{f}} \begin{bmatrix} \boldsymbol{\lambda}_{v}^{\mathrm{T}} \boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\mathrm{T}} \boldsymbol{\lambda}_{\theta} \end{bmatrix} \mathrm{d}t \qquad (9.3.14\mathrm{b})$$

对于这里所讨论的问题,其特征函数的完备性是指任意满足边界 条件(9.2.6)的连续函数 v(t)都可以表示为

$$\Pi_2(\boldsymbol{\nu},\boldsymbol{\nu}) = \sum_{j=1}^{\infty} a_j^2 \qquad (9.3.15)$$

其中

$$a_{j} = \frac{1}{2} \int_{0}^{t_{\mathrm{f}}} \left[\boldsymbol{\lambda}_{\varphi_{j}}^{\mathrm{T}}(t) \boldsymbol{B}_{1} \boldsymbol{B}_{1}^{\mathrm{T}} \boldsymbol{\lambda}_{v}(t) \right] \mathrm{d}t \qquad (9.3.16)$$

这是由正交性定理和归一化条件得到的。

为证明(9.3.15),首先考虑用前 n 阶特征函数逼近 v(t),并令 两者之差为

$$\boldsymbol{\rho}_n(t) = \boldsymbol{v}(t) - \sum_{j=1}^n a_j \boldsymbol{\varphi}(t) \qquad (9.3.17)$$

则显然有

 $\Pi_2[\varphi_j(t), \rho_n(t)] = 0, (j = 1, 2, 3, ..., n)$ (9.3.18) 从而下列不等式成立

$$0 \leqslant \Pi_{2} \big[\boldsymbol{\rho}_{n}(t), \boldsymbol{\rho}_{t}(t) \big] =$$

$$\Pi_{2} \big[\boldsymbol{v}(t) - \sum_{j=1}^{n} a_{j} \boldsymbol{\varphi}_{j}(t), \boldsymbol{v}(t) - \sum_{j=1}^{n} a_{j} \boldsymbol{\varphi}_{j}(t) \big] =$$

$$\Pi_{2} \big[\boldsymbol{v}(t), \boldsymbol{v}(t) \big] - \sum_{j=1}^{n} a_{j}^{2} =$$

$$\Pi_{2} \big[\boldsymbol{\lambda}_{v}(t), \boldsymbol{\lambda}_{v}(t) \big] - \sum_{j=1}^{n} a_{j}^{2} \qquad (9.3.19)$$

利用前面的正交性条件(9.3.11)还可得到

$$\boldsymbol{\Pi}_{1}[\boldsymbol{\varphi}(t),\boldsymbol{\rho}_{n}(t)] = 0 \qquad (9.3.20)$$

基于上述关系及(9.3.14a)可得

 $\boldsymbol{\Pi}_1 \big[\boldsymbol{v}(t) , \boldsymbol{v}(t) \big] =$

$$\Pi_{1}\left[\sum_{j=1}^{n}a_{j}\boldsymbol{\varphi}\left(ft\right),\sum_{j=1}^{n}a_{j}\boldsymbol{\varphi}\left(ft\right)\right]+$$
$$2\Pi_{1}\left[\sum_{j=1}^{n}a_{j}\boldsymbol{\varphi}\left(ft\right)\boldsymbol{\rho}_{n}(t)\right]+\Pi_{1}\left[\boldsymbol{\rho}_{n}(t),\boldsymbol{\rho}_{n}(t)\right]=$$

$$\Pi_{1}\left[\sum_{j=1}^{n}a_{j}\boldsymbol{\varphi}\left(ft\right),\sum_{j=1}^{n}a_{j}\boldsymbol{\varphi}\left(ft\right)\right] + \Pi_{1}\left[\boldsymbol{\rho}_{n}(t),\boldsymbol{\rho}_{n}(t)\right] = \sum_{j=1}^{n}\boldsymbol{\gamma}_{j}^{-2}a_{j}^{2} + \Pi_{1}\left[\boldsymbol{\rho}_{n}(t),\boldsymbol{\rho}_{n}(t)\right]$$
(9.3.21)

因为 $\Pi_1[v(t),v(t)]$ 是有界的^[21],而且 $\sum_{j=1}^n \gamma_j^{-2} a_j^2$ 为一正数,所以 $\Pi_1[\rho_n(t),\rho_n(t)]$ 必有上界,再考虑到 $\lim_{n \to \infty} \gamma_n^{-2} = \infty$ 以及特征值 γ_{n+1}^{-2} 满足的不等式

 $\gamma_{n+1}^{-2}\Pi_2[\rho_n,\rho_n] \leqslant \Pi_1[\rho_n,\rho_n]$ (9.3.22) 必然有 $n \to \infty$ 时

 $\Pi_2[\mathbf{v}(t), \mathbf{v}(t)] - \sum_{j=1}^{\infty} a_j^2 = \Pi_2[\rho(t), \rho(t)] \to 0 (9.3.23)$ 这就证明了(9.3.15)式,即特征函数的完备性。

由于这些特征函数是完备的,故任意全状态向量函数 v(t) 可 以用特征解来展开

$$\mathbf{v}(t) = \begin{cases} \mathbf{x}_{v}(t) \\ \mathbf{\lambda}_{v}(t) \end{cases} = \sum_{j}^{\infty} a_{j} \mathbf{\varphi} \ f(t) = \sum_{j}^{\infty} a_{j} \begin{cases} \mathbf{x}_{\varphi j}(t) \\ \mathbf{\lambda}_{\varphi j}(t) \end{cases}$$
(9. 3. 24)

其中 a_i 由(9.3.16)式定义。

需要说明的是,特征解一定保证 $\Pi_2 = \int_0^{t_i} \lambda_{\varphi_j}^{\mathsf{T}}(t) B_1 B_1^{\mathsf{T}} \lambda_{\varphi_j}(t) dt >$ 0,所以归一化条件可以成立。事实上,特征解是从广义 Rayleigh 商(9.2.12)~(9.2.14)导出的,对于有限值 *j*,特征值 γ_j^{-2} 不会是 无穷大,表明 Π_2 不可能是零。

9.4 分散控制系统最优 H. 范数计算

现在基于模态综合的思想研究分散 H_{∞} 控制系统最优范数的 计算问题,即基本特征值 γ_{∞}^{-2} 的计算。前文为表述简单起见,各子 系统的基本特征值也用 γ_{opt}^{-2} 表示。本节的 γ_{opt}^{-2} 指的则是全系统的特征值。子系统的划分规则是将全系统的状态向量 x 表示为子系统状态向量 $x^{(1)}$ 的直和,相应地对偶向量 λ 也是 $\lambda^{(1)}$ 的直和,下面采用 变分问题的直接法来求解。

因为变分原理(9.2.14)中有两类变量 x 与 λ 独立地变分,并 且对于泛函是取最小-最大(min-max),所以仅利用全部子系统的 特 征解来展开是不够的。通常所说的按特征解展开是基于一类变 量自共轭算子的展开定理^[20],该定理表明第 1 个子系统的状态向 量 $x^{(1)}$ 可以用其特征向量的状态向量部分 $x_{j}^{(1)}$ 来展开,同样第 1 个 子系统的对偶向量 $\lambda^{(1)}$ 可以用其特征向量的对偶向量部分 $\lambda_{j}^{(1)}$ 来 展 开。但这个问题中两个展开式的系数是互相无关的,也就是说, 状态向量与其对偶向量应分别展开,即

$$\mathbf{x}(t) = \left\{ \begin{matrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{matrix} \right\} = \left\{ \begin{matrix} \sum_{j} b_{j}^{(1)} \mathbf{x}_{j}^{(1)} \\ \\ \sum_{k} b_{k}^{(2)} \mathbf{x}_{k}^{(2)} \end{matrix} \right\}$$
(9. 4. 1a)

$$\boldsymbol{\lambda}(t) = \begin{cases} \boldsymbol{\lambda}^{(1)} \\ \boldsymbol{\lambda}^{(2)} \end{cases} = \begin{cases} \sum_{j} a_{j}^{(1)} \boldsymbol{\lambda}_{j}^{(1)} \\ \sum_{k} a_{k}^{(2)} \boldsymbol{\lambda}_{k}^{(2)} \end{cases}$$
(9.4.1b)

根 据线性组合原理,也可以将系数 a⁽¹⁾ 的形函数取为子系统的全 特征向量函数,于是

$$\mathbf{x}(t) = \begin{cases} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{cases} = \begin{cases} \sum_{j} (a_{j}^{(1)} + b_{j}^{(1)}) \mathbf{x}_{j}^{(1)} \\ \sum_{k} (a_{k}^{(2)} + b_{k}^{(2)}) \mathbf{x}_{k}^{(2)} \end{cases}$$
(9. 4. 2a)
$$\mathbf{\lambda}(t) = \begin{cases} \mathbf{\lambda}^{(1)} \\ \mathbf{\lambda}^{(2)} \end{cases} = \begin{cases} \sum_{j} a_{j}^{(1)} \mathbf{\lambda}_{j}^{(1)} \\ \sum_{k} a_{k}^{(2)} \mathbf{\lambda}_{k}^{(2)} \end{cases}$$
(9. 4. 2b)

相当于

$$\mathbf{v}(t) = \begin{cases} \mathbf{v}^{(1)} \\ \mathbf{v}^{(2)} \end{cases} = \begin{cases} \sum_{j} (a_{j}^{(1)} \mathbf{\phi}_{j}^{(1)} b_{j}^{(1)} \beta_{j}^{(1)}) \\ \sum_{k} (a_{k}^{(2)} \mathbf{\phi}_{k}^{(2)} b_{k}^{(2)} \beta_{k}^{(2)}) \end{cases}$$
(9.4.3)

其中 $a_j^{(1)}, a_k^{(2)}, b_j^{(1)}, b_k^{(2)}$ 为待定参数,这些参数由变分原理(9.2.14) 来确定, $\beta_j^{(i)}$ 表示对应于向量函数 $\beta^{(i)} = \{ \mathbf{x}^{(i)^T}, \mathbf{0}^T \}^T$ 的第 *j* 阶特征函 数(*i* = 1,2)。

公式(9.2.12) 与(9.2.13) 中的各项除 *A* 阵外,都是各子系统 独立的。因此大系统的 Π_1 与 Π_2 分别是各子系统的变分泛函 $\Pi_1^{(i)}$ 与 $\Pi_2^{(i)}$ 之和,再加上 *A* 阵中含有 ϵ 的非对角子矩阵。这里先将 $\Pi_1^{(i)}$ 与 $\Pi_2^{(i)}$ 计算出来。理论上讲特征函数展开需要取无穷多项,但实际 上,只需要取有限多项就可以了^[16,17]。设子系统 1 和 2 分别取 n_{e1} 和 n_{e2} 项展开,相应的泛函为

$$\Pi_{1}^{(i)} = \int_{0}^{t_{\rm f}} \left[\boldsymbol{\lambda}^{(i)^{\rm T}} \dot{\boldsymbol{x}}^{(i)} - \boldsymbol{\lambda}^{(i)^{\rm T}} \boldsymbol{A}_{ii} \boldsymbol{x}^{(i)} + \frac{1}{2} \boldsymbol{\lambda}^{(i)^{\rm T}} \boldsymbol{B}_{2,ii} \boldsymbol{B}_{2,ii}^{\rm T} \boldsymbol{\lambda}^{(i)} - \frac{1}{2} \boldsymbol{x}^{(i)^{\rm T}} \boldsymbol{C}_{ii}^{\rm T} \boldsymbol{C}_{ii} \boldsymbol{x}^{(i)} \right] \mathrm{d}t - \frac{1}{2} \boldsymbol{x}^{(i)^{\rm T}} (t_{\rm f}) \boldsymbol{S}_{iii} \boldsymbol{x}^{(i)} (t_{\rm f}) \quad (9.\ 2.\ 12')$$

$$\Pi_{2}^{(i)} = \frac{1}{2} \int_{0}^{t_{\rm f}} \left[\boldsymbol{\lambda}^{(i)^{\rm T}} \boldsymbol{B}_{1,ii} \boldsymbol{B}_{1,ii}^{\rm T} \boldsymbol{\lambda}^{(i)} \right] \mathrm{d}t \qquad (9.\ 2.\ 13')$$

将 *x*⁽ⁱ⁾,λ⁽ⁱ⁾ 代入,根据正交归一条件以及(9.3.4b)(9.3.5b),可以 导出

$$\Pi_{1}^{(i)} = \sum_{j=1}^{n_{ei}} \left[\gamma_{j}^{(i)^{-2}} a_{j}^{(i)^{2}} - \int_{0}^{t_{f}} \sum_{k=1}^{n_{ei}} \left[(\mathbf{x}_{j}^{(i)^{\mathrm{T}}} \mathbf{C}_{ii}^{\mathrm{T}} \mathbf{C}_{ii} \mathbf{x}_{k}^{(i)} / 2) \cdot (b_{j}^{(i)} b_{k}^{(i)}) \right] dt - \sum_{k=1}^{n_{ei}} \left[(\mathbf{x}_{j1}^{(i)^{\mathrm{T}}} \mathbf{S}_{fii} \mathbf{x}_{k1}^{(i)} / 2) \cdot (b_{j}^{(i)} b_{k}^{(i)}) \right] \right] = \sum_{j} \gamma_{j}^{(i)^{-2}} a_{j}^{(i)^{2}} - \mathbf{b}^{(i)^{\mathrm{T}}} \mathbf{C}_{e}^{(i)} \mathbf{b}^{(i)} / 2 \qquad (9.4.4a)$$

$$\Xi \mathbf{\Phi}$$

$$\boldsymbol{C}_{c}^{(i)} = \int_{0}^{t_{\mathrm{f}}} \boldsymbol{X}^{(i)^{\mathrm{T}}} \boldsymbol{C}_{ii}^{\mathrm{T}} \boldsymbol{C}_{ii} \boldsymbol{X}^{(i)} \mathrm{d}t - \boldsymbol{X}_{\mathrm{f}}^{(i)^{\mathrm{T}}} \boldsymbol{S}_{\mathrm{f}ii} \boldsymbol{X}_{\mathrm{f}}^{(i)}$$

而 $X^{(i)} = [x_1^{(i)}, x_2^{(i)}, \dots, x_{n_e^i}^{(i)}] \ge i$ 号子系统特征向量函数组成的子 矩阵, $X_t^{(i)}$ 是矩阵 $X^{(i)}$ 在 $t = t_t$ 时的值, $b^{(i)} = \{b_1^{(i)}, b_2^{(i)}, \dots, b_{n_e^i}^{(i)}\}^T$ 是 参数组成的待定向量。由于 i 号子系统的可控可观性, $C_e^{(i)}$ 是对称 正定矩阵^[18]。又因为

$$\boldsymbol{\Pi}_{2j}^{(i)} = \int_{0}^{t_{\mathrm{f}}} [\boldsymbol{\lambda}_{j}^{(i)^{\mathrm{T}}} \boldsymbol{B}_{1,ii} \boldsymbol{B}_{1,ii}^{\mathrm{T}} \boldsymbol{\lambda}_{j}^{(i)} / 2] \mathrm{d}t = 1$$

所以有

$$\Pi_{2}^{(i)} = \sum_{j=1}^{n_{ei}} \Pi_{2j}^{(i)} \cdot a_{j}^{(i)^{2}} = \sum_{j} a_{j}^{(i)^{2}}$$
(9.4.4b)

其中上标(i)代表子系统号(i = 1, 2),下标 j代表特征解的阶次。 泛函中的子系统交互项为

$$\Pi_{1m} = -\int_{0}^{t_{f}} \left[\boldsymbol{\lambda}^{(1)^{T}} \boldsymbol{A}_{12} \boldsymbol{x}^{(2)} + \boldsymbol{\lambda}^{(2)^{T}} \boldsymbol{A}_{21} \boldsymbol{x}^{(1)} \right] dt = \\ - \varepsilon \sum_{j=1}^{n_{e1}} \sum_{k=1}^{n_{e2}} \left[c_{jk}^{(12)} a_{j}^{(1)} (a_{k}^{(2)} + b_{k}^{(2)}) + c_{kj}^{(21)} a_{k}^{(2)} (a_{j}^{(1)} + b_{j}^{(1)}) \right]$$

$$(0 \ 4 \ 5)$$

其中

$$c_{jk}^{(12)} = \int_{0}^{t_{\mathrm{f}}} \left[\boldsymbol{\lambda}_{j}^{(1)^{\mathrm{T}}} \boldsymbol{A}_{12} \boldsymbol{x}_{k}^{(2)} \right] \mathrm{d}t \qquad (9. 4. 6a)$$

$$c_{jk}^{(21)} = \int_{0}^{t_{\mathrm{f}}} [\boldsymbol{\lambda}_{j}^{(2)^{\mathrm{T}}} \boldsymbol{A}_{21} \boldsymbol{x}_{k}^{(1)}] \mathrm{d}t \qquad (9. 4. 6\mathrm{b})$$

由此可组成矩阵 C⁽¹²⁾ 与 C⁽²¹⁾,于是

$$\Pi_{1m} = - \varepsilon [a^{(1)^{\mathrm{T}}} C^{(12)} (a^{(2)} + b^{(2)}) + a^{(2)^{\mathrm{T}}} C^{(21)} (a^{(1)} + b^{(1)})]$$
(9.4.5')

$$\Pi_{1} = \Pi_{1}^{(1)} + \Pi_{1}^{(2)} + \Pi_{1m}$$
(9.4.7a)

$$\Pi_2 = \Pi_2^{(1)} + \Pi_2^{(2)} \tag{9.4.7b}$$

将两个子系统的待定参数组成未知向量

$$\boldsymbol{a} = \{\boldsymbol{a}^{(1)^{\mathrm{T}}}; \boldsymbol{a}^{(2)^{\mathrm{T}}}\}^{\mathrm{T}} = \{a_{1}^{(1)}, a_{2}^{(1)}, \cdots, a_{n_{e_{1}}}^{(1)}; a_{1}^{(2)}, a_{2}^{(2)}, \cdots, a_{n_{e_{2}}}^{(2)}\}^{\mathrm{T}}$$
(9.4.8a)

$$\Pi_{1} = \sum_{j=1}^{n_{c1}} \gamma_{j}^{(1)^{-2}} a_{j}^{(1)^{2}} + \sum_{j=1}^{n_{c2}} \gamma_{j}^{(2)^{-2}} a_{j}^{(2)^{2}} - \frac{1}{2} \boldsymbol{b}^{\mathrm{T}} \mathrm{diag} [\boldsymbol{C}_{c}^{(1)}, \boldsymbol{C}_{c}^{(2)}] \boldsymbol{b} - \boldsymbol{\epsilon} \boldsymbol{a}^{\mathrm{T}} \begin{bmatrix} \boldsymbol{0} & \boldsymbol{C}^{(12)} \\ \boldsymbol{C}^{(21)} & \boldsymbol{0} \end{bmatrix} (\boldsymbol{a} + \boldsymbol{b})$$
(9.4.9a)

$$II_{2} = \sum_{j=1}^{n_{e1}} a_{j}^{(1)^{2}} + \sum_{j=1}^{n_{e2}} a_{j}^{(2)^{2}}$$
(9.4.9b)

由于全部子系统可控可观,对于参数向量 b 取最大可以先在 II₁ 中 完成,得到对 a 的二次齐次型

$$\boldsymbol{\Pi}_{1}(\boldsymbol{a}) = \boldsymbol{a}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{a} \qquad (9. 4. 10 \mathrm{a})$$

$$\Pi_2(\boldsymbol{a}) = \boldsymbol{a}^T \boldsymbol{a} \tag{9.4.10b}$$

$$\begin{split} \boldsymbol{K} &= \operatorname{diag}\left(\left[\boldsymbol{\gamma}_{1}^{(1)}\right)^{-2}, \cdots, \left(\boldsymbol{\gamma}_{n_{e_{1}}}^{(1)}\right)^{-2}, \left(\boldsymbol{\gamma}_{1}^{(2)}\right)^{-2}, \cdots, \left(\boldsymbol{\gamma}_{n_{e_{2}}}^{(2)}\right)^{-2}\right] - \\ & \varepsilon \begin{bmatrix} \boldsymbol{0} & \boldsymbol{C}^{(12)} \\ \boldsymbol{C}^{(21)} & \boldsymbol{0} \end{bmatrix} + \frac{1}{2} \varepsilon^{2} \begin{bmatrix} \boldsymbol{0} & \boldsymbol{C}^{(12)} \\ \boldsymbol{C}^{(21)} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{C}_{c}^{(1)} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{c}^{(2)} \end{bmatrix}^{-1} \\ & \begin{bmatrix} \boldsymbol{0} & \boldsymbol{C}^{(12)} \\ \boldsymbol{C}^{(21)} & \boldsymbol{0} \end{bmatrix}^{\mathrm{T}} \end{split}$$
(9.4.11)

然后只剩下对参数向量 a 取最小。这样,确定全系统分散 H_{∞} 控制的最优参数 γ_{opt}^{-2} 成为下列特征值问题

$$\gamma_{\rm opt}^{-2} = \min_{a} \frac{\Pi_1(a)}{\Pi_2(a)}$$
(9.4.12)

由于 $\Pi_2(a)$ 的特点,这个问题可以直接用矩阵特征值算法求解。

9.5 分散控制系统算例

例1 设两个子系统均为二维。系统参数如下:

有
$A_{11} = \begin{bmatrix} 0. & 0 & 0. & 934 \\ 1. & 0 & 0. & 036 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 0. & 1 & 0. & 934 \\ 1. & 0 & 0. & 1 \end{bmatrix}$ $A_{12} = \begin{bmatrix} 1. & 0 & 2. & 0 \\ 3. & 0 & 4. & 0 \end{bmatrix}, \quad A_{21} = \begin{bmatrix} 2. & 0 & 1. & 0 \\ 3. & 0 & 2. & 0 \end{bmatrix}$ $C_{11} = \begin{bmatrix} 1. & 0 & 0. & 0 \\ 0. & 0 & 0. & 3 \end{bmatrix}, \quad C_{22} = \begin{bmatrix} 1. & 0 & 0. & 0 \\ 0. & 0 & 0. & 3 \end{bmatrix}$ $B_{1,11} = I_2, B_{1,22} = I_2, B_{2,11} = I_2, B_{2,22} = I_2$ $S_{f} = \mathbf{0}_{4}, \quad t_{f} = 1. & 6, \varepsilon = 0. \\ 5$

对 每个子系统,分别计算前 11 阶特征函数,然后用模态综合法计 算整体系统的特征值,前三阶特征值分别为

 $\gamma_1^{-2} = 1.00120; \quad \gamma_2^{-2} = 3.14202; \quad \gamma_3^{-2} = 7.43173$ 另外,按整体大系统计算得到的前三阶特征值分别为

 $\gamma_1^{-2} = 1.00348; \quad \gamma_2^{-2} = 3.29876; \quad \gamma_3^{-2} = 7.64488$ 可以发现两种方法计算的结果是相符的。当然 H_{∞} 控制问题只需要最低阶特征值,即 $\gamma_{opt}^{-2} = \gamma_1^{-2}$ 。因此 $\gamma_{opt} = 0.999$ 。

例 2 本例中矩阵 $A 和 B_2$ 参数取自文献 2 第 226 页的例题。

 $A_{11} = \begin{bmatrix} -1.0 & 0.5 \\ 0.1 & -2.0 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 0.1 & 0.5 & 0 \\ -0.5 & 0.2 & -0.1 \end{bmatrix}$ $A_{21} = \begin{bmatrix} 0.2 & 0 \\ 0.1 & -0.2 \\ 0.4 & 0.1 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} -5.0 & 0.5 & -1.0 \\ 0 & -2.0 & 0 \\ -0.5 & 0 & -4.0 \end{bmatrix}$ $C_{11} = I_2, \quad C_{22} = I_3$ $B_{2,11} = \begin{bmatrix} 1.0 \\ 0.0 \end{bmatrix}, B_{2,22} = \begin{bmatrix} 0.0 \\ 1.0 \\ 1.0 \end{bmatrix}, B_{1,11} = I_2, B_{1,22} = I_3$

 $S_{f_{11}} = \mathbf{0}_2, S_{f_{22}} = \mathbf{0}_3, t_f = 1.0, \varepsilon = 1.0$

对 每个子系统,分别计算前 12 阶特征函数,然后用模态综合法计 算整体系统的特征值,前三阶特征值分别为 $\gamma_1^{-2} = 5.52606; \gamma_2^{-2} = 9.28535; \gamma_3^{-2} = 10.63458$ 当然也可以按整体大系统计算前三阶特征值

 $\gamma_1^{-2} = 5.52566; \gamma_2^{-2} = 9.29521; \gamma_3^{-2} = 10.63446$ 两种方法的结果是相符的。而 $\gamma_{opt} = 0.425$ 。

例 3 系统为 9 阶,系统的构成如下所示

首先取 $S_f = \mathbf{0}_{\mathfrak{g}}$ 计算,然后再取 $S_f = 0.1 \times I_{\mathfrak{g}}$ 计算。对每个子系统 分别计算前15阶特征函数,再利用模态综合法计算整体系统的特 征值,对第一种末端条件,前三阶特征值分别为

 $\gamma_1^{-2} = 2.61857; \gamma_2^{-2} = 7.28467; \gamma_3^{-2} = 9.34617$ 而对大系统直接计算得到的结果是

 $\gamma_1^{-2} = 2.61857; \gamma_2^{-2} = 7.28467; \gamma_3^{-2} = 9.34617$ 因此 $\gamma_{opt} = 0.618$ 。对第二种末端条件,利用模态综合法得到的前 三阶特征值分别为

 $\gamma_1^{-2} = 1.79135; \gamma_2^{-2} = 5.60858; \gamma_3^{-2} = 6.53211$ 直接计算大系统前三阶特征值的结果为

 $\gamma_1^{-2} = 1.79108; \gamma_2^{-2} = 5.59807; \gamma_3^{-2} = 6.53056$ 所以 $\gamma_{opt} = 0.747$ 。对两种不同的末端条件,两种方法的计算结果都是相符的。

例4 现在考虑下列6阶系统

 $A = \begin{bmatrix} A_{11} & \vdots & \epsilon A_{12} \\ \epsilon A_{21} & A_{22} \end{bmatrix} =$ $\begin{bmatrix} 0 & 1.0 & 0.5 & 1.0 & 0.6 & 0 \\ -2.0 & -3.0 & 1.0 & 0 & 0.1.0 \\ 0.5 & 1.0 & 0 & 2.0 & 1.0 & 0.5 \\ 0 & -0.5 & 1.0 & 3.0 & 0 & -0.5 \\ \hline 1.0 & 0 & 1.0 & 0 & 0 & 1.0 \\ 0 & 0.5 & 0.5 & 0 & -3.0 & -4.0 \end{bmatrix}$ $B_{2} = \begin{bmatrix} B_{2.11} & 0 \\ 0 & B_{2.22} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 \\ 0 & 3.0 & 0 & 0 \\ 0 & 0 & 4.0 & 0 \\ 0 & 0 & 0 & 2.0 \\ 0 & 0 & 0 & 2.0 \end{bmatrix}$ $B_{1} = I_{6}, C = I_{6}, S_{f} = 0.1 \times I_{6}, t_{f} = 1.6$

 $B_1 = I_6, C = I_6, S_f = 0.1 \times I_6, t_f = 1.6$ 对每个子系统分别计算前 15 阶特征函数,再利用模态综合法计算 整体系统的前三阶特征值

 $\gamma_1^{-2} = 1.745 \ 90; \gamma_2^{-2} = 4.174 \ 16; \gamma_3^{-2} = 7.473 \ 65$ 作为比较,直接计算大系统的前三阶特征值为

 $\gamma_1^{-2} = 1.745\ 63; \gamma_2^{-2} = 4.161\ 83; \gamma_3^{-2} = 7.478\ 45$

因此系统的 $\gamma_{opt} = 0.757$ 。由上述几个算例可以发现,两种方法计算的结果是相符的,当然其间也有一些误差,因为模态综合法 对每一个子系统只取了前十几阶特征模态,总会有一些误差。

9.6 分散 H_∞ 滤波

 H_{m} 滤波是 H_{m} 控制的对偶问题,可以将分散 H_{m} 控制问题中 的一些方法用于解决分散 H。滤波问题。分散滤波在提高系统容 错性、可靠性及鲁棒性等方面的诸多优势,使得分散滤波成为大系 统分散控制中一个重要的研究方向[22],而且分散滤波本身也是先 进飞行器导航系统设计和大型空间结构状态估计中的核心问 题^[22,23]。目前,基于 Kalman 滤波理论的分散式滤波系统是解决分 散滤波问题的主要方法[24,25],但这类滤波方法对系统模型精度的 要求比较高,而日要求外界干扰噪声信号的统计特性已知,否则难 以达到预定的性能指标,甚至会产生较大的误差。由于 H.。 滤波器 可 以将外界干扰信号对估计误差的影响尽可能减小,且在一定的 模型误差范围内仍能保持预定的性能指标[26],人们开始考虑基于 H_{∞} 理论的分散滤波系统设计方案^[27,28]。文献 27,28 中所设计的分 散 H_{∞} 滤波器在 γ 趋向于无穷大时成为相应的分散 Kalman 滤波 器,这一点与集中式 H_{∞} 滤波器是类似的。文献 29,30 中的方法提 供了各子系统独立设计,量测数据在各子系统并行处理的机制,可 以在获得各子系统状态估计的基础上综合得到大系统的状态估 计。这种方法可以保证系统的稳定性,但是不能保证整个滤波系统 性能指标的最优性。

本节将首先介绍分散 *H*_∞ 滤波器的设计方法^[28],然后利用本 章前几节中的方法研究分散 *H*_∞ 滤波中的计算问题。考虑下列线 性定常系统的滤波问题

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{w} \tag{9.6.1}$$

其中x是n维状态向量,w是干扰向量。对系统的第i ($i = 1, 2, \dots, p$) 组量测为

$$\mathbf{y}_i = \mathbf{C}_i \mathbf{x} + \mathbf{v}_i \tag{9.6.2}$$

其中 y_i和 v_i 分别为 m 维量测向量和干扰向量。要求所设计的滤波 器满足下列性能指标

$$\frac{\int_{0}^{t_{\mathrm{f}}} (\hat{\boldsymbol{x}} - \boldsymbol{x})^{\mathrm{T}} \boldsymbol{Q} (\hat{\boldsymbol{x}} - \boldsymbol{x}) \mathrm{d}t}{(\hat{\boldsymbol{x}}_{0} - \boldsymbol{x}_{0})^{\mathrm{T}} \boldsymbol{P}_{0}^{-1} (\hat{\boldsymbol{x}}_{0} - \boldsymbol{x}_{0}) + \int_{0}^{t_{\mathrm{f}}} (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{W}^{-1} \boldsymbol{w} + \sum_{i=1}^{p} \boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{V}_{i}^{-1} \boldsymbol{v}_{i}) \mathrm{d}t}$$
(9. 6. 3)

其中 \hat{x} 是对状态的估计,加权矩阵W和 V_i 为正定阵,Q为半正定矩阵,初始状态协方差阵 P_0 正定。满足性能指标式(9.6.3)的全局滤波器对系统全部状态的估计为

$$\dot{\hat{x}} = A\hat{x} + P \sum_{i=1}^{p} C_{i}^{\mathrm{T}} V_{i}^{-1} (y_{i} - C_{i}\hat{x}), \hat{x}(0) = \mathbf{0} \quad (9. 6. 4)$$

其中 P 由下列方程计算

$$\dot{\boldsymbol{P}} = \boldsymbol{A}\boldsymbol{P} + \boldsymbol{P}\boldsymbol{A}^{\mathrm{T}} + \boldsymbol{W} + \gamma^{-2}\boldsymbol{P}\boldsymbol{Q}\boldsymbol{P} - \boldsymbol{P}\sum_{i=1}^{p}\boldsymbol{C}_{i}^{\mathrm{T}}\boldsymbol{V}_{i}^{-1}\boldsymbol{C}_{i}\boldsymbol{P}, \boldsymbol{P}(0) = \boldsymbol{P}_{0}$$

各局部滤波器对系统全部状态的估计为

 $\dot{\hat{x}}_i = A\hat{x}_i + P_i C_i^{\mathrm{T}} V_i^{-1} (y_i - C_i \hat{x}_i), \hat{x}_i (0) = 0$ (9.6.6) 其中 P_i 由下列方程决定

 $\dot{\boldsymbol{P}}_{i} = \boldsymbol{A}\boldsymbol{P}_{i} + \boldsymbol{P}_{i}\boldsymbol{A}^{\mathrm{T}} + \boldsymbol{W} + \boldsymbol{\gamma}^{-2}\boldsymbol{P}_{i}\boldsymbol{Q}\boldsymbol{P}_{i} - \boldsymbol{P}\boldsymbol{C}_{i}^{\mathrm{T}}\boldsymbol{V}_{i}^{-1}\boldsymbol{C}_{i}\boldsymbol{P}_{i}, \boldsymbol{P}_{i}(0) = \boldsymbol{P}_{i0}$ (9. 6. 7)

各局部滤波器的滤波值与全局滤波器滤波值之间的关系为

$$\hat{\boldsymbol{x}} = \sum_{i=1}^{p} (\boldsymbol{P} \boldsymbol{P}_{i}^{-1} \hat{\boldsymbol{x}}_{i} + \boldsymbol{h}_{i})$$
(9.6.8)

其中 h; 是由第 i 个局部滤波器决定的向量,并满足下列方程

$$\dot{\boldsymbol{h}}_i = (\boldsymbol{A} - \boldsymbol{P} \sum_{i=1}^p \boldsymbol{C}_i^{\mathrm{T}} \boldsymbol{V}_i^{-1} \boldsymbol{C}_i) \boldsymbol{h}_i + (\boldsymbol{P} \boldsymbol{P}_i^{-1} - \boldsymbol{I}) \boldsymbol{W} \boldsymbol{P}_i^{-1} \hat{\boldsymbol{x}}_i +$$

 $\gamma^{-2} PQ(I - PP_i^{-1}) \hat{x}_i, h_i(0) = 0$ (9. 6. 9)

方程(9.6.8)表明全局滤波可以分解为局部滤波 $\hat{x}_i 与 h_i$ 的线性组 合。上述形式的分散滤波器中各局部滤波器虽然只利用了局部测 量数据,但仍然是基于整个系统模型的滤波,给出的是全部状态的 估计。下面介绍仅利用子系统模型的局部滤波器,这种滤波器只给 出对部分状态的估计,其形式与上面介绍的分散 H_{∞} 滤波器有所 不同^[28]。

将系统划分成 p 个子系统,各子系统的状态和量测方程为 $\dot{x}_i = A_i x_i + w_i$ (9.6.10)

 $\mathbf{y}_i = \mathbf{H}_i \mathbf{x}_i + \mathbf{v}_i \tag{9.6.11}$

其中w_i和v_i分别为m维过程噪声和r维量测噪声,矩阵A_i和H_i是 具有恰当维数的子系统矩阵。这里设局部量测噪声v_i与全局量测 噪声相一致,而局部过程噪声w_i与全局过程噪声不同,这是由于 子系统之间存在相互耦合影响。全局滤波器仍然为式(9.6.4)和 (9.6.5),各局部滤波器的形式为

 $\dot{\hat{x}}_{i} = A_{i}\hat{x}_{i} + P_{i}H_{i}^{T}V_{i}^{-1}(y_{i} - H_{i}\hat{x}_{i}), \hat{x}_{i}(0) = 0 \quad (9. \ 6. \ 12)$ $\dot{P}_{i} = A_{i}P_{i} + P_{i}A_{i}^{T} + W_{i} + \gamma^{-2}P_{i}Q_{i}P_{i} - P_{i}H_{i}^{T}V_{i}^{-1}H_{i}P_{i}, P_{i}(0) = P_{i0}$ $(9. \ 6. \ 13)$

上式中的加权矩阵 W_i 和 V_i 正定, Q_i 半正定。如果存在矩阵 S_i 使得 $C_i = H_i S_i, (i = 1, 2, \dots, p)$ (9.6.14)

则可将系统全部状态的滤波表示为

$$\hat{\mathbf{x}} = \sum_{i=1}^{p} (\mathbf{G}_i \hat{\mathbf{x}} + \mathbf{h}_i)$$
 (9. 6. 15)

其中

$$\dot{\mathbf{h}}_i = F\mathbf{h}_i + (F\mathbf{G}_i - \dot{\mathbf{G}}_i - \mathbf{G}_iF_i)\hat{\mathbf{x}}_i, \mathbf{h}_i(0) = \mathbf{0}$$
 (9.6.16)

$$\boldsymbol{F} = \boldsymbol{A} - \boldsymbol{P} \sum_{i=1}^{\nu} \boldsymbol{C}_{i}^{\mathrm{T}} \boldsymbol{V}_{i}^{-1} \boldsymbol{C}_{i}$$
(9. 6. 17)

$$\boldsymbol{F}_i = \boldsymbol{A}_i - \boldsymbol{P}_i \boldsymbol{H}_i^{\mathrm{T}} \boldsymbol{V}_i^{-1} \boldsymbol{H}_i \qquad (9. \ 6. \ 18)$$

$$\boldsymbol{G}_i = \boldsymbol{P} \boldsymbol{S}_i^{\mathrm{T}} \boldsymbol{P}_i^{-1} \tag{9. 6. 19}$$

而 G_i 可以由式(9.6.13)及式(9.6.19)确定。

现在将系统(9.1.1)(9.1.2) 写成更一般的形式,即式 (9.6.20)及式(9.6.21),当然状态方程中不包含输入项 *u* 会使滤 波问题的表述简单一些

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}_1\boldsymbol{w} + \boldsymbol{B}_2\boldsymbol{u} \tag{9.6.20}$$

$$z = Lx \tag{9.6.21}$$

$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{w} \tag{9.6.22}$$

其中u是 m_2 维控制向量;w是 m_1 维干扰噪声向量;x是n维状态向量;y是q维量测向量,z是p维输出向量;矩阵A, B_1 , B_2 ,L,C,D是具有恰当维数的矩阵。 (A, B_2) , (A, B_1) 可控,(A, C)可测。

有限时间 $[0,t_f]$ 上的 H_∞ 滤波问题为:在最不利干扰噪声w的作用下,寻找满足因果律的线性算子 \mathscr{T} ,使估计误差 $\hat{z} - Lx$ 的范数最小,其中 $\hat{z}(t) = \mathscr{T}(y,u)$,即

$$\|\mathscr{G}\|^{2} = \max_{\mathbf{w}} \min_{\mathbf{u}} \frac{\frac{1}{2} \int_{0}^{t_{\mathrm{f}}} (\hat{\mathbf{z}} - \mathbf{L}\mathbf{x})^{\mathrm{T}} (\hat{\mathbf{z}} - \mathbf{L}\mathbf{x}) \mathrm{d}t}{\frac{1}{2} \int_{0}^{t_{\mathrm{f}}} \mathbf{w}^{\mathrm{T}} \mathbf{w} \mathrm{d}t + \frac{1}{2} (\mathbf{x}_{0} - \hat{\mathbf{x}}_{0})^{\mathrm{T}} \mathbf{P}_{0}^{-1} (\mathbf{x}_{0} - \hat{\mathbf{x}}_{0})}$$

(9.6.23)

分散滤波时将大系统分成 *s* 个子系统,相应地状态向量 *x* 也分 解为 *s* 个状态子向量 x_i (*i* = 1,2,...,*s*)的直和。本章中为简单起 见,设 *s* = 2,则系统矩阵和向量也相应地写成分块形式

$oldsymbol{x} = egin{cases} oldsymbol{x}_1 \ oldsymbol{x}_2 \end{bmatrix}$	(9.6.24a)			
$\mathbf{z} = egin{cases} \mathbf{z}_1 \ \mathbf{z}_2 \end{pmatrix}$	(9.6.24b)			
$oldsymbol{y} = egin{cases} oldsymbol{y}_1 \ oldsymbol{y}_2 \end{pmatrix}$	(9.6.24c)			
$oldsymbol{u} = egin{cases} oldsymbol{u}_1 \ oldsymbol{u}_2 \end{pmatrix}$	(9.6.24d)			
$\boldsymbol{w} = \begin{cases} \boldsymbol{w}_1 \\ \boldsymbol{w}_2 \end{cases}$	(9.6.24e)			
$oldsymbol{A} = egin{bmatrix} oldsymbol{A}_{11} & oldsymbol{\epsilon}oldsymbol{A}_{12} \ oldsymbol{\epsilon}oldsymbol{A}_{21} & oldsymbol{A}_{22} \end{bmatrix}$	(9.6.25a)			
$oldsymbol{B}_2 = egin{bmatrix} oldsymbol{B}_{2,11} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{B}_{2,22} \end{bmatrix}$	(9.6.25b)			
$oldsymbol{B}_1 = egin{bmatrix} oldsymbol{B}_{1,11} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{B}_{1,22} \end{bmatrix}$	(9.6.25c)			
$L = egin{bmatrix} L_{11} & 0 \ 0 & L_{22} \end{bmatrix}$	(9.6.25d)			
$oldsymbol{C} = egin{bmatrix} oldsymbol{C}_{11} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{C}_{22} \end{bmatrix}$	(9.6.25e)			
$oldsymbol{D} = egin{bmatrix} oldsymbol{D}_{11} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{D}_{22} \end{bmatrix}$	(9.6.25f)			

出于讨论问题的需要,这里的子系统划分方式比式(9.6.10) 具体一些。这样系统(9.6.20) ~ (9.6.22) 可以分解为

 $\dot{x}_{1} = A_{11}x_{1} + \varepsilon A_{12}x_{2} + B_{1,11}w_{1} + B_{2,11}u_{1} \quad (9. \ 6. \ 26a)$ $z_{1} = L_{11}x_{1} \qquad (9. \ 6. \ 26b)$ $y_{1} = C_{11}x_{1} + D_{11}w_{1} \qquad (9. \ 6. \ 26c)$

$$\dot{\mathbf{x}}_2 = \mathbf{A}_{22}\mathbf{x}_2 + \varepsilon \mathbf{A}_{21}\mathbf{x}_1 + \mathbf{B}_{1,22}\mathbf{w}_2 + \mathbf{B}_{2,22}\mathbf{u}_2$$
 (9.6.27a)

$$z_2 = L_{22} x_2$$
 (9.6.27b)

 $y_2 = C_{22}x_2 + D_{22}w_2$ (9.6.27c)

含 ε 的项将两个子系统联系在一起,如果取 ε = 0,可得到两个完全 独立的系统。因此可以先将它们独立分析,然后再通过含 ε 的项联 系在一起。

9.7 H_{∞} 滤波子系统特征解

为表述简单,忽略子系统下标,任一子系统的 H_∞ 滤波问题都可导出下列变分问题^[19]

J =

$$\int_{0}^{t_{\mathrm{f}}} \left[\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - \boldsymbol{\lambda}^{\mathrm{T}} \overline{\boldsymbol{A}} \boldsymbol{x} + \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} (\boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} - \boldsymbol{\gamma}^{-2} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L}) \boldsymbol{x} - \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\lambda} \right] \mathrm{d}t + \frac{1}{2} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{P}_{0}^{-1} \boldsymbol{x}_{0}, \delta J = 0 \qquad (9.7.1)$$

其中

$$\overline{\boldsymbol{A}} = \boldsymbol{A} - \boldsymbol{B}_{1} \boldsymbol{D}^{\mathrm{T}} \boldsymbol{C}$$
(9.7.2a)

$$\boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} = \boldsymbol{B}_{1}(\boldsymbol{I} - \boldsymbol{D}^{\mathrm{T}}\boldsymbol{D})\boldsymbol{B}_{1}^{\mathrm{T}}$$
(9.7.2b)

由变分原理(9.7.1)可得对偶方程

$$\dot{\boldsymbol{x}} = \overline{\boldsymbol{A}}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{\lambda} \tag{9.7.3a}$$

$$\dot{\boldsymbol{\lambda}} = (\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{x} - \overline{\boldsymbol{A}}^{\mathrm{T}}\boldsymbol{\lambda} \qquad (9.7.3\mathrm{b})$$

及两端边值条件

$$\boldsymbol{\lambda}_0 = \boldsymbol{P}_0^{-1} \boldsymbol{x}_0 \tag{9.7.4a}$$

$$\boldsymbol{\lambda}_{\rm f} = \boldsymbol{0} \tag{9.7.4b}$$

变分原理(9.7.1)可以写成

$$\delta(\Pi_1 - \gamma^{-2}\Pi_2) = 0 \tag{9.7.5}$$

其中

$$\Pi_{1} = \int_{0}^{t_{\mathrm{f}}} \left[\boldsymbol{\lambda}^{\mathrm{T}} \dot{\boldsymbol{x}} - \boldsymbol{\lambda}^{\mathrm{T}} \overline{\boldsymbol{A}} \boldsymbol{x} + \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x} - \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\lambda} \right] \mathrm{d}t + \frac{1}{2} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{P}_{0}^{-1} \boldsymbol{x}_{0}$$
(9. 7. 6)

$$\boldsymbol{\Pi}_{2} = \frac{1}{2} \int_{0}^{t_{\mathrm{f}}} [\boldsymbol{x}^{\mathrm{T}} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{x}] \mathrm{d}t \qquad (9.7.7)$$

变分方程式(9.7.5)可以写为

$$\gamma_{\text{opt}}^{-2} = \min_{x} \max_{\lambda} \frac{\Pi_1}{\Pi_2}$$
(9.7.8)

这是广义 Rayleigh 商,有两类变量 $x \le \lambda$ 参与变分。此滤波问题的 Riccati 微分方程为

$$\dot{\boldsymbol{P}} = \boldsymbol{B}\boldsymbol{B}^{\mathrm{T}} + \overline{\boldsymbol{A}}\boldsymbol{P} + \boldsymbol{P}\overline{\boldsymbol{A}}^{\mathrm{T}} - \boldsymbol{P}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C} - \boldsymbol{\gamma}^{-2}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L})\boldsymbol{P}, \boldsymbol{P}(0) = \boldsymbol{P}_{0}$$
(9.7.9)

方程(9.7.3)的解满足 $x(t) = P(t)\lambda(t)$,对于两端齐次边界条件 (9.7.4),如果 γ^{-2} 不是特征值,则 Riccati 方程的解 $P(t_f)$ 并不奇 异,于是满足齐次边界条件的只有平凡解;而当 γ^{-2} 是特征值 γ_j^{-2} 时, $P(t_f)$ 将是奇异矩阵,这样可以找到非零向量 $x(t_f)$ 对应于边界 条 件(9.7.4)。然后由 $x(t_f)$, $\lambda(t_f)$ 利用 2^N 算法将全状态的特征向 量计算出来。即

$$\boldsymbol{\gamma}_{j}^{-2}, \boldsymbol{\varphi}_{j}(t) = \begin{cases} \boldsymbol{x}_{\varphi_{j}}(t) \\ \boldsymbol{\lambda}_{\varphi_{j}}(t) \end{cases}, j = 1, 2, 3, \cdots \qquad (9.\ 7.\ 10)$$

得到全部特征解后,对任意初值条件及任意参数 $\gamma^{-2} < \gamma_{opt}^{-2}$, 全状态向量都可以用全状态的特征向量函数(9.7.10) 展开来求 解。与 H_{∞} 控制问题类似,这里简单介绍特征向量函数的正交性。 设有两个特征解 $\varphi_{j}(t)$ 与 $\varphi_{j}(t)$ ($i \neq j$),它们分别满足方程

 $\begin{aligned} \dot{\mathbf{x}}_{\varphi i} &= \overline{\mathbf{A}} \mathbf{x}_{\varphi i} + \mathbf{B} \mathbf{B}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi i} & (9.\ 7.\ 11a) \\ \dot{\boldsymbol{\lambda}}_{\varphi i} &= (\mathbf{C}^{\mathrm{T}} \mathbf{C} - \boldsymbol{\gamma}_{i}^{-2} \mathbf{L}^{\mathrm{T}} \mathbf{L}) \mathbf{x}_{\varphi i} - \overline{\mathbf{A}}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi i} & (9.\ 7.\ 11b) \\ \dot{\mathbf{x}}_{\varphi j} &= \overline{\mathbf{A}} \mathbf{x}_{\varphi j} + \mathbf{B} \mathbf{B}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi j} & (9.\ 7.\ 12a) \\ \dot{\boldsymbol{\lambda}}_{\varphi j} &= (\mathbf{C}^{\mathrm{T}} \mathbf{C} - \boldsymbol{\gamma}_{j}^{-2} \mathbf{L}^{\mathrm{T}} \mathbf{L}) \mathbf{x}_{\varphi j} - \overline{\mathbf{A}}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi j} & (9.\ 7.\ 12b) \end{aligned}$

 $\lambda_{\varphi_{j}}^{\mathrm{T}} \, \underline{c} \, \underline{x} \, \underline{\zeta} \, (9. \, 7. \, 11a), \mathbf{x}_{\varphi_{j}}^{\mathrm{T}} \, \underline{c} \, \underline{x} \, \underline{\zeta} \, (9. \, 7. \, 11b), \mathbf{n} \, \mathbf{i} \, \mathbf{i} \, \mathbf{j} \, \mathbf{i} \, \mathbf{j} \, \mathbf$

 $\int_{0}^{t_{f}} \left[\lambda_{\varphi_{j}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{i}} + \lambda_{\varphi_{i}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{j}} - \lambda_{\varphi_{j}}^{\mathrm{T}} \overline{\boldsymbol{A}} \dot{\boldsymbol{x}}_{\varphi_{i}} - \lambda_{\varphi_{j}}^{\mathrm{T}} \overline{\boldsymbol{A}} \boldsymbol{x}_{\varphi_{j}} - \lambda_{\varphi_{j}}^{\mathrm{T}} \overline{\boldsymbol{B}} \boldsymbol{B}^{\mathrm{T}} \lambda_{\varphi_{i}} + \right]$

 $\mathbf{x}_{\varphi_j}^{\mathrm{T}}(\mathbf{C}^{\mathrm{T}}\mathbf{C} - \gamma_i^{-2}\mathbf{L}^{\mathrm{T}}\mathbf{L})\mathbf{x}_{\varphi_i}]dt + \mathbf{x}_{\varphi_j}^{\mathrm{T}}(0)\mathbf{P}_0^{-1}\mathbf{x}_{\varphi_i}(0) = 0$ (9.7.14) 对式(9.7.13a) 和式(9.7.13b) 做类似运算得

 $\int_{0}^{t_{f}} \left[\lambda_{\varphi_{j}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{i}} + \lambda_{\varphi_{i}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{j}} - \lambda_{\varphi_{j}}^{\mathrm{T}} \overline{A} \boldsymbol{x}_{\varphi_{i}} - \lambda_{\varphi_{i}}^{\mathrm{T}} \overline{A} \boldsymbol{x}_{\varphi_{j}} - \lambda_{\varphi_{j}}^{\mathrm{T}} B B^{\mathrm{T}} \lambda_{\varphi_{i}} + \boldsymbol{x}_{\varphi_{i}}^{\mathrm{T}} (\boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} - \boldsymbol{\gamma}_{i}^{-2} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L}) \boldsymbol{x}_{\varphi_{i}} \right] \mathrm{d}t + \boldsymbol{x}_{\varphi_{i}}^{\mathrm{T}} (0) \boldsymbol{P}_{0}^{-1} \boldsymbol{x}_{\varphi_{i}} (0) = 0 \quad (9. \ 7. \ 15)$

 $\mathbf{x}_{\varphi_j}(\mathbf{c}, \mathbf{c}' = \mathbf{v}_j, \mathbf{L}, \mathbf{L})\mathbf{x}_{\varphi_i}] dt + \mathbf{x}_{\varphi_j}(\mathbf{c})\mathbf{r}_0, \mathbf{x}_{\varphi_i}(\mathbf{c}) = 0$ (9.7.15) 式(9.7.14) 与式(9.7.15) 相减,有

$$(\boldsymbol{\gamma}_i^{-2} - \boldsymbol{\gamma}_j^{-2}) \int_0^{t_f} \boldsymbol{x}_{\varphi_j}^{\mathrm{T}} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{x}_{\varphi_i} \mathrm{d}t = 0 \qquad (9.7.16)$$

由此即导出对于非负对称矩阵 $L^{T}L$ 的正交性定理,即不同特征值 $\gamma_{i}^{-2} = \gamma_{j}^{-2}$ 所对应的全状态特征向量函数 $\varphi_{i}(t)$ 和 $\varphi_{j}(t)$ 对于非负 对称矩阵 $L^{T}L$ 是正交的。

$$\int_{0}^{t_{i}} \boldsymbol{x}_{\varphi j}^{\mathrm{T}} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{x}_{\varphi i} \mathrm{d}t = 0, (i \neq j)$$
(9.7.17)

归一化条件则可以表示为

$$\frac{1}{2} \int_{0}^{t_{f}} \left[\boldsymbol{x}_{\varphi_{j}}^{\mathrm{T}} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{x}_{\varphi_{j}} \right] \mathrm{d}t = 1 \qquad (9.7.18)$$

利用该正交性结果,又得到

 $\int_{0}^{t_{f}} [\lambda_{\varphi_{j}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{i}} + \lambda_{\varphi_{i}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{j}} - \lambda_{\varphi_{j}}^{\mathrm{T}} \overline{\boldsymbol{A}} \boldsymbol{x}_{\varphi_{i}} - \lambda_{\varphi_{i}}^{\mathrm{T}} \overline{\boldsymbol{A}} \boldsymbol{x}_{\varphi_{j}} - \lambda_{\varphi_{j}}^{\mathrm{T}} B B^{\mathrm{T}} \lambda_{\varphi_{i}} +$

 $\boldsymbol{x}_{\varphi_j}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x}_{\varphi_i}] \mathrm{d}t + \boldsymbol{x}_{\varphi_j}^{\mathrm{T}}(0) \boldsymbol{P}_0^{-1} \boldsymbol{x}_{\varphi_i}(0) = 0 , (i \neq j)$ (9.7.19) 由归一化条件又有

$$\int_{0}^{t_{\mathrm{f}}} [\boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \dot{\boldsymbol{x}}_{\varphi_{i}} - \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \overline{\boldsymbol{A}} \boldsymbol{x}_{\varphi_{i}} - \frac{1}{2} \boldsymbol{\lambda}_{\varphi_{i}}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\lambda}_{\varphi_{i}} + \frac{1}{2} \boldsymbol{x}_{\varphi_{i}}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{x}_{\varphi_{i}}] \mathrm{d}t +$$

 $\frac{1}{2}\boldsymbol{x}_{\varphi_i}^{\mathrm{T}}(0)\boldsymbol{P}_0^{-1}\boldsymbol{x}_{\varphi_i}(0) = \boldsymbol{\gamma}_i^{-2}$ (9.7.20)

特征向量函数的完备性可按类似于 9.3 节中的步骤得到,这 里不再重复。这样任意全状态向量函数 v(t)就可以用特征函数展 开

$$\mathbf{v}(t) = \begin{cases} \mathbf{x}_{\mathbf{v}}(t) \\ \mathbf{\lambda}_{\mathbf{v}}(t) \end{cases} = \sum_{j=1}^{\infty} a_{j} \boldsymbol{\varphi}_{j}(t) = \sum_{j=1}^{\infty} a_{j} \begin{bmatrix} \mathbf{x}_{\varphi_{j}}(t) \\ \mathbf{\lambda}_{\varphi_{j}}(t) \end{bmatrix} \quad (9.7.21)$$

其中 a; 是待定系数。根据正交性定理及归一化条件, 有

$$a_{j} = \frac{1}{2} \int_{0}^{t_{f}} \left[\boldsymbol{x}_{\varphi_{j}}^{\mathrm{T}}(t) \boldsymbol{L}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{x}(t) \right] \mathrm{d}t \qquad (9.\ 7.\ 22)$$

9.8 分散滤波系统最优 H_∞ 范数计算

在子系统特征解的基础上,就可以利用模态综合法来计算分 散滤波系统的最优 H_∞ 范数。将状态向量及其对偶向量分别展开 为

$$\mathbf{x}(t) = \begin{cases} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{cases} = \begin{cases} \sum_{j} b_{j}^{(1)} \mathbf{x}_{j}^{(1)} \\ \sum_{k} b_{k}^{(2)} \mathbf{x}_{k}^{(2)} \end{cases}$$
(9.8.1a)
$$\mathbf{\lambda}(t) = \begin{cases} \mathbf{\lambda}^{(1)} \\ \mathbf{\lambda}^{(2)} \end{cases} = \begin{cases} \sum_{j} a_{j}^{(1)} \mathbf{\lambda}_{j}^{(1)} \\ \sum_{k} a_{k}^{(2)} \mathbf{\lambda}_{k}^{(2)} \end{cases}$$
(9.8.1b)

根据线性组合的原理,也可以将系数*a⁽ⁱ⁾*的形函数取为子系统的全 特征向量,于是

$$\mathbf{x}(t) = \left\{ \begin{matrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{matrix} \right\} = \left\{ \begin{matrix} \sum_{j} b_{j}^{(1)} \mathbf{x}_{j}^{(1)} \\ \\ \sum_{k} b_{k}^{(2)} \mathbf{x}_{k}^{(2)} \end{matrix} \right\}$$
(9.8.2a)

$$\boldsymbol{\lambda}(t) = \begin{cases} \boldsymbol{\lambda}^{(1)} \\ \boldsymbol{\lambda}^{(2)} \end{cases} = \begin{cases} \sum_{j} (a_{j}^{(1)} + b_{j}^{(1)}) \boldsymbol{\lambda}_{j}^{(1)} \\ \sum_{j} (a_{k}^{(2)} + b_{k}^{(2)}) \boldsymbol{\lambda}_{k}^{(2)} \end{cases}$$
(9.8.2b)

其中, $a_{j}^{(1)}$, $a_{k}^{(2)}$, $b_{j}^{(1)}$, $b_{k}^{(2)}$ 为待定参数,应当由变分原理(9.7.8)来确 定。

由式(9.6.26) ~ 式(9.6.27) 可知原系统矩阵的构成特点使 得式(9.7.6) 与式(9.7.7) 中的各项除 *A* 阵外,都是各子系统独立 的。因此 $\Pi_1 与 \Pi_2$ 的组成是各子系统的变分泛函 $\Pi_1^{(i)} 与 \Pi_2^{(j)}$ 之和, 再加上 *A* 的非对角块子矩阵。可以先将 $\Pi_1^{(i)} 与 \Pi_2^{(j)}$ 计算出来。特征 函数展开需要取无穷多项,但实际计算中只需要取有限多项。设子 系统 1 和 2 分别取 n_{e1} 和 n_{e2} 项展开

$$\Pi_{1}^{(i)} = \int_{0}^{t_{f}} \left[\boldsymbol{\lambda}^{(i)^{\mathrm{T}}} \dot{\boldsymbol{x}}^{(i)} - \boldsymbol{\lambda}^{(i)^{\mathrm{T}}} \overline{\boldsymbol{A}}_{ii} \boldsymbol{x}^{(i)} + \frac{1}{2} \boldsymbol{x}^{(i)^{\mathrm{T}}} \boldsymbol{C}_{ii}^{\mathrm{T}} \boldsymbol{C}_{ii} \boldsymbol{x}^{(i)} - \frac{1}{2} \boldsymbol{\lambda}^{(i)^{\mathrm{T}}} \boldsymbol{B}_{ii} \boldsymbol{B}_{ii}^{\mathrm{T}} \boldsymbol{\lambda}^{(i)} \right] \mathrm{d}t + \frac{1}{2} \boldsymbol{x}^{(i)^{\mathrm{T}}} (0) \boldsymbol{P}_{0ii}^{-1} \boldsymbol{x}^{(i)} (0) \qquad (9.8.3)$$

$$\boldsymbol{\Pi}_{2}^{(i)} = \frac{1}{2} \int_{0}^{t_{i}} \boldsymbol{x}^{(i)^{\mathrm{T}}} \boldsymbol{L}_{ii}^{\mathrm{T}} \boldsymbol{L}_{ii} \boldsymbol{x}^{(i)} \mathrm{d}t \qquad (9.8.4)$$

将 x⁽ⁱ⁾,λ⁽ⁱ⁾ 代入,根据正交归一条件以及(9.7.11)(9.7.12) 可以 导出

 $\Pi_{1}^{(i)} =$

$$\sum_{j=1}^{n_{ei}} \left[\boldsymbol{\gamma}_{j}^{(i)^{-2}} b_{j}^{(i)^{2}} - \int_{0}^{t_{f}} \sum_{k=1}^{n_{ei}} \left[(\boldsymbol{\lambda}_{j}^{(i)^{\mathrm{T}}} \boldsymbol{B}_{ii} \boldsymbol{B}_{ii}^{\mathrm{T}} \boldsymbol{\lambda}_{k}^{(i)} / 2) \cdot (a_{j}^{(i)} a_{k}^{(i)}) \right] \mathrm{d}t \right] = \sum_{j} \boldsymbol{\gamma}_{j}^{(i)^{-2}} b_{j}^{(i)^{2}} - \boldsymbol{a}^{(i)^{\mathrm{T}}} \boldsymbol{C}_{\beta}^{(i)} \boldsymbol{a}^{(i)} / 2$$
(9.8.5)

其中

$$\boldsymbol{C}_{\beta}^{(i)} = \int_{0}^{t_{\mathrm{f}}} \boldsymbol{\Lambda}^{(i)^{\mathrm{T}}} \boldsymbol{B}_{ii} \boldsymbol{B}_{ii}^{\mathrm{T}} \boldsymbol{\Lambda}^{(i)} \mathrm{d}t$$

而 $\Lambda^{(i)} = [\lambda_1^{(i)}, \lambda_2^{(i)}, \dots, \lambda_{n_{ei}}^{(i)}] \in (i)$ 号子系统特征向量函数组成的子 矩阵, $a^{(i)} = \{a_1^{(i)}, a_2^{(i)}, \dots, a_{n_{ei}}^{(i)}\}^T$ 是参数组成的待定向量。(i)号子系 统的可控可观性使得 $C_{c}^{(i)}$ 是对称正定矩阵。因为

$$\boldsymbol{\varPi}_{2j}^{(i)} = \int_{0}^{t_{\mathrm{f}}} [\boldsymbol{x}_{j}^{(i)^{\mathrm{T}}} \boldsymbol{L}_{ii}^{\mathrm{T}} \boldsymbol{L}_{ii} \boldsymbol{x}_{j}^{(i)} / 2] \mathrm{d}t = 1$$

所以有

$$\Pi_{2}^{(i)} = \sum_{j=1}^{n_{ei}} \Pi_{2j}^{(i)} \cdot b_{j}^{(i)^{2}} = \sum_{j} b_{j}^{(i)^{2}}$$
(9.8.6)

其中上标(i)代表子系统号,下标 j代表特征解阶次。

子系统交互项为

$$\Pi_{1m} = -\int_{0}^{t_{f}} \left[\boldsymbol{\lambda}^{(1)}{}^{\mathrm{T}} \boldsymbol{A}_{12} \boldsymbol{x}^{(2)} + \boldsymbol{\lambda}^{(2)}{}^{\mathrm{T}} \boldsymbol{A}_{21} \boldsymbol{x}^{(1)} \right] \mathrm{d}t = \\ - \varepsilon \sum_{j=1}^{n_{e1}} \sum_{k=1}^{n_{e2}} \left[c_{jk}^{(12)} (a_{j}^{(1)} + b_{j}^{(1)}) b_{k}^{(2)} + c_{kj}^{(21)} (a_{k}^{(2)} + b_{k}^{(2)}) b_{j}^{(1)} \right]$$

$$(9.8.7)$$

其中

$$c_{jk}^{(12)} = \int_{0}^{t_{\mathrm{f}}} \left[\boldsymbol{\lambda}_{j}^{(1)^{\mathrm{T}}} \overline{\boldsymbol{A}}_{12} \boldsymbol{x}_{k}^{(2)} \right] \mathrm{d}t \qquad (9.8.8a)$$

$$c_{jk}^{(21)} = \int_{0}^{t_{\rm f}} \left[\boldsymbol{\lambda}_{j}^{(2)^{\rm T}} \overline{\boldsymbol{A}}_{21} \boldsymbol{x}_{k}^{(1)} \right] \mathrm{d}t \qquad (9.8.8\mathrm{b})$$

由此可组成矩阵 $C^{(12)}$ 与 $C^{(21)}$,于是

 $\Pi_{1m} = - \varepsilon [(\boldsymbol{a}^{(1)} + \boldsymbol{b}^{(1)})^{\mathrm{T}} \boldsymbol{C}^{(12)} \boldsymbol{b}^{(2)} + (\boldsymbol{a}^{(2)} + \boldsymbol{b}^{(2)})^{\mathrm{T}} \boldsymbol{C}^{(21)} \boldsymbol{b}^{(1)}]$ (9.8.9)

综合方程(9.8.5)(9.8.6) 与(9.8.9) 给出总系统的泛函

 $\Pi = \Pi_1^{(1)} + \Pi_1^{(2)} + \Pi_{1m}$ (9.8.10)

$$\Pi_2 = \Pi_2^{(1)} + \Pi_2^{(2)} \tag{9.8.11}$$

将两个子系统的待定参数组成未知向量

$$\boldsymbol{a} = \{\boldsymbol{a}^{(1)^{\mathrm{T}}}; \boldsymbol{a}^{(2)^{\mathrm{T}}}\}^{\mathrm{T}} = \{a_{1}^{(1)}, a_{2}^{(1)}, \cdots, a_{n_{e1}}^{(1)}; a_{1}^{(2)}, a_{2}^{(2)}, \cdots, a_{n_{e2}}^{(2)}\}^{\mathrm{T}}$$
(9. 8. 12)

$$\boldsymbol{b} = \{\boldsymbol{b}^{(1)^{\mathrm{T}}}; \boldsymbol{b}^{(2)^{\mathrm{T}}}\}^{\mathrm{T}} = \{b_{1}^{(1)}, b_{2}^{(1)}, \cdots, b_{n_{e1}}^{(1)}; b_{1}^{(2)}, b_{2}^{(2)}, \cdots, b_{n_{e2}}^{(2)}\}^{\mathrm{T}}$$
(9.8.13)

$$\boldsymbol{\gamma} = \text{diag}[(\boldsymbol{\gamma}_{1}^{(1)})^{-2}, \cdots, (\boldsymbol{\gamma}_{n_{e_{1}}}^{(1)})^{-2}, (\boldsymbol{\gamma}_{1}^{(2)})^{-2} \cdots, (\boldsymbol{\gamma}_{n_{e_{2}}}^{(2)})^{-2}]$$
(9.8.14)

有

$$\boldsymbol{\Pi}_{1} = \boldsymbol{b}^{\mathrm{T}} \boldsymbol{\gamma} \boldsymbol{b} - \frac{1}{2} \boldsymbol{a}^{\mathrm{T}} \mathrm{diag} \begin{bmatrix} \boldsymbol{C}_{\beta}^{(1)}, \boldsymbol{C}_{\beta}^{(2)} \end{bmatrix} \boldsymbol{a} - \epsilon (\boldsymbol{a} + \boldsymbol{b})^{\mathrm{T}} \begin{bmatrix} \boldsymbol{0} & \boldsymbol{C}^{(12)} \\ \boldsymbol{C}^{(21)} & \boldsymbol{0} \end{bmatrix} \boldsymbol{b}$$
(9.8.15)

$$\boldsymbol{\Pi}_2 = \boldsymbol{b}^{\mathrm{T}} \boldsymbol{b} \tag{9.8.16}$$

由于全部子系统皆可控可观,对参数向量 a 取最大可以先对 Π_1 完成,得到 b 的二次齐次型,有

$$\boldsymbol{\Pi}_{1}(\boldsymbol{b}) = \boldsymbol{b}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{b} \qquad (9.8.17a)$$

$$\boldsymbol{\Pi}_{2}(\boldsymbol{b}) = \boldsymbol{b}^{\mathrm{T}}\boldsymbol{b} \tag{9.8.17b}$$

$$\begin{split} \boldsymbol{K} &= \text{diag} \begin{bmatrix} (\boldsymbol{\gamma}_{1}^{(1)})^{-2}, \cdots, (\boldsymbol{\gamma}_{n_{e_{1}}}^{(1)})^{-2}, (\boldsymbol{\gamma}_{1}^{(2)})^{-2}, \cdots, (\boldsymbol{\gamma}_{n_{e_{2}}}^{(2)})^{-2} \end{bmatrix} - \\ & \boldsymbol{\varepsilon} \begin{bmatrix} \boldsymbol{0} & \boldsymbol{C}^{(12)} \\ \boldsymbol{C}^{(21)} & \boldsymbol{0} \end{bmatrix} + \frac{1}{2} \boldsymbol{\varepsilon}^{2} \begin{bmatrix} \boldsymbol{0} & \boldsymbol{C}^{(12)} \\ \boldsymbol{C}^{(21)} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{C}_{c}^{(1)} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{0}^{(2)} \end{bmatrix}^{-1} \\ & \begin{bmatrix} \boldsymbol{0} & \boldsymbol{C}^{(12)} \\ \boldsymbol{C}^{(21)} & \boldsymbol{0} \end{bmatrix}^{\mathrm{T}} \end{split}$$
(9.8.18)

然 后就只有对于参数向量 b 取最小了。因此全系统 H_{∞} 滤波的最 优参数 $\gamma_{m^2}^{-2}$ 的计算又成为下列特征值问题

$$\gamma_{\text{opt}}^{-2} = \min_{b} \frac{\Pi_1(\boldsymbol{b})}{\Pi_2(\boldsymbol{b})}$$
(9.8.19)

9.9 分散滤波系统算例

例1 两个子系统各为两维。大系统的各矩阵参数为

$$\mathbf{A} = \begin{bmatrix} 0.8 & 1.0 & 1.0 & 1.0 \\ 2.0 & 0.9 & 0.0 & 1.0 \\ 1.0 & 0.0 & 0.8 & 1.0 \\ 0.0 & 1.0 & 2.0 & 0.4 \end{bmatrix}$$

$$B_{1} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$
$$D = \begin{bmatrix} 0.1 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.1 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.1 & 0.0 \\ 0.0 & 0.0 & 0.1 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.1 \end{bmatrix}$$
$$C = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.8 & 0.0 \\ 0.0 & 0.0 & 1.8 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$
$$L = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$
$$P_{0} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

首先对每个子系统计算,取前 20 阶特征函数利用模态综合法 计算,所得前三阶特征值为

 $\gamma_1^{-2} = 1.02692, \gamma_2^{-2} = 1.41811, \gamma_3^{-2} = 2.20035$ 而作为一个大系统直接计算的前三阶特征值

 $\gamma_1^{-2} = 1.02683, \gamma_2^{-2} = 1.41311, \gamma_3^{-2} = 2.18469$ 因此分散滤波系统的最优 H_{∞} 范数为 $\gamma_{opt} = 0.987$ 。计算中不需要 B_2 ,所以未列出其数据,下一个例子与此相同。

例 2	, 两个子系统均为 5 阶系统。大系统矩阵参数为													
A =														
0.1	0.54	15	0		0		0	0).5	3.	0	0	0	0 7
— 6	— 0.	05	6		0		0		0	0.5		0	0	0
0	0		— 3.33		3.33		0		0	0		0.5	0	0
0	— 5.	21	0		-12.5		0		0	0		0	0.5	0
1	0.42	25	0		0		0.2		0	()	0	0	0.5
0.5	0		0		0		0	0	.1	0.	8	0.2	0	0.1
0	0.5		0	1		0	0	-4		- 0.5		6	0	0
0	0		0.	5		0	0		0	()	— 3	2	0
0	0		0)	0.	. 5	0		0	— 5	.33	0	— 2 . 5	1
0	0		0			0	0.5		1	0.	45	0	0	0.2_
$B_1 =$	$ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 1 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0	0 0 0 1 0 0 0 0	0 0 0 0 1 0 0 0	0 0 0 0 0 1 0 0	0 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0					
D =	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	0	0 0 (0 (0	0) () (12	0 0 (0 (5	0) () (0 0 0 0 0	0	0 0 0.1	1_{-} 0 0	0 0]		
C =	L ₀	0	0	12.		0	0 3	, 3	0	0	0			

分为两个子系统计算,取前 20 阶特征函数利用模态综合法计 算,所得前三阶特征值为

 $\gamma_1^{-2} = 1.21709; \gamma_2^{-2} = 2.33924; \gamma_3^{-2} = 3.02109$ 而作为一个大系统直接计算的前三阶特征值

 $\gamma_1^{-2} = 1.21346; \gamma_2^{-2} = 2.3299; \gamma_3^{-2} = 3.01079$ 则分散滤波系统的最优 H_{∞} 范数为 $\gamma_{opt} = 0.908$ 。

结构静力学与最优控制相模拟,也与 Kalman-Bucy 滤波相模

 $X^{[11]}, H_{\infty}$ 控制与 H_{∞} 滤波则与结构动力学相模 $X^{[19]}$ 。本章的内容进一步说明,子结构振动的模态综合法可应用于大系统分散 H_{∞} 控制和 H_{∞} 滤波系统的最优范数计算,因此结构力学以及最优控制的许多方法可以相互借鉴、共同发展。

参考文献

- 1 Ho Y C, Mitter S K. Directions in Large-scale Systems: Many-person Optimization and Decentralized Control. New York: Plenum Press, 1976
- 2 Jamshidi M. Large-scale systems Modeling, Control and Fuzzy Logic. New Jersey: Prentice-Hall, 1997
- 3 Cheng C F. Disturbances attenuation for interconnected systems by decentralized control. Int. J. Control, 1997, 66(2): 213~224
- 4 Date R A, Chow J H. A parametrization approach to *opt*imal H_2 and H_{∞} decentralized control problems. Automatica, 1992, 29(2): 457~463
- 5 Veillette R J, Medanic, J V, Perkins W R. Design of reliable control systems. IEEE Trans. Automatic Control, 1992, 37(3): 290~304
- 6 Zhong W X, Zhong X X. Computational structural mechanics, *optimal* control and semi-analytical method for PDE. Computers & Structures, 1990, 37(6); 993~1004
- 7 Zhong W X, Howson W P, Williams F W. H_{∞} control state feedback and Rayleigh quotient. Computer Methods in Appl. Mech. Eng., 2001, 191 (3-5): 489~501
- 8 Zhong W X, Williams F W. H_{∞} filtering with secure eigenvalue calculation and precise integration. Int. J. Numer. Meth. Eng., 1999, 46(7): $1017 \sim 1030$
- 9 Zhong W X. Variational method and computation for H_{∞} control. Appl. Math. and Mech., 2000, 21(12): 1407~1416
- 10 Zhong W X, Yang Z S. On the computation of the main eigenpairs of the continuous-time linear quadratic control problems. Appl. Math.

and Mech., 1991, 12(1): 45~50

- 11 钟万勰,欧阳华江,邓子辰. 计算结构力学与最优控制. 大连. 大连理 工大学出版社,1993
- 12 Zhong W X, Williams F W. A precise time step integration method. Proc. Inst. Mech. Engrs., Part C, Journal of Mechanical Engineering Science, 1994, 208(C6): 427~430
- 13 钟万勰.矩阵黎卡提方程的精细积分.计算结构力学及其应用,1994,
 11(2):113~119
- 14 Zhong W X. The method of precise integration of finite strip and wave guide problems. In: Proc. of Int. Conf. on Computational Methods in Struct. and Geotech. Eng., 1994, Hong Kong, Vol 1, 51~59
- 15 Zhong W X. Precise integration of eigen-waves for layered media. In: Proc. of EPMESC-5, 1995, Techno-Press, Taejon, Korea, Vol 2, 1209~1220
- 16 Leung A Y T. Dynamic stiffness & sub-structures. London: Springer, 1993.
- 17 王文亮,杜作润.结构振动与动力子结构分析.上海.复旦大学出版 社,1985
- 18 Zhong W X, Williams F W, Bennett P N. Extension of the Wittrick-Williams algorithm to mixed variable systems. J. Vib. Acous. Trans. ASME, 1997, 119(3): 334~340
- 19 钟万勰.应用力学对偶体系.北京.科学出版社,2002
- 20 Courant R, Hilbert D. Methods of Mathematical Physics (Vol. I) . New York: Interscience Publishers Inc, 1953
- 21 Arthurs A M. Complementary Variational Principles . Oxford: Clarendon Press, 1980
- 22 胡寿松,邹志勤. 大系统的分散滤波结构及容错应用. 数据采集与处 理,1994, Vol. 9, No. 1, 1~8
- 23 Mallory G J W, Miller D W. Decentralized State Estimation for Flexible Space Structures. Journal of Guidance Control and Dynamics, 2000, Vol. 23, No. 4, 665-672

- Hashemipour H R, Roy S, Laub A J. Decentralized Structures for Parallel Kalman Filtering. IEEE Trans. Automatic Control, 1988, Vol. 33, No. 1, 88~94
- 25 Carlson N A. Federated Square Root Filter for Decentralized Parallel Processes IEEE Trans. Aerospace and Electronic Systems, 1990, Vol. 26, No. 3, 517~525
- 26 Nagpal K M, Khargonekar P P. Filtering and Smoothing in an H_∞ Setting. IEEE Trans. Automatic Control, 1991, Vol. 36, No. 2, 152~ 166
- 27 Jin S H, Park J B, Kim K K and Yoon T S. Krein Space Appraoch to Decentralized H_∞ State Estimation. IEE Proc. - Control Theory and Application, 2001, Vol. 148, No. 6, 502~508
- 28 Jang J, Speyer J L. Decentralized Game Theoretic Filters, Proceedings of American Control Conference, Baltimore, Maryland, June, 1994, 3379~3383
- 29 Saif M, Guan Y. Decentralized State Estimation in Large-scale Interconnected Dynamical Systems, Automatica, 1992, Vol. 28, No. 1, 215~219
- 30 Sundareshan M K, Elbanna R M. Design of Decentralized Observation Schemes for Large-scale Interconnected Systems: Some New Results, Automatica, 1990, Vol. 26, No. 4, 789~796

附录 线性系统最优跟踪问题

跟踪问题是控制工程中一类重要的问题,控制雷达天线跟踪 人造地球卫星或其它飞行目标属于典型的跟踪问题。这类问题要 求通过控制器的作用使系统的输出尽量接近所期望的轨线,并极 小化给定的性能指标泛函。调节器问题是跟踪问题的一个特例,即 零轨线的跟踪问题。线性定常系统二次型性能指标跟踪问题是最 基本的问题,其最优控制律的构造需要求解 Riccati 微分方程和外 部控制输入向量所满足的微分方程^[1]。由于前者是非线性矩阵微 分方程,后者是变系数线性微分方程,通常的方法求解它们比较复 杂,本章将利用精细积分法求解这些微分方程。因为基于 LQG 理 论所设计的跟踪系统的鲁棒性比较差,*H*。控制理论也被用于研 究具有鲁棒性的最优跟踪系统设计问题,本章将简单介绍这一问题,并把本书中所介绍的方法用于求解系统设计中的一些问题。

A.1 LQ 最优跟踪

设所考虑的线性系统的状态方程和输出方程为

 $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u}, \quad \boldsymbol{x}(0) = \boldsymbol{x}_0 \qquad (A. 1. 1)$

 $\mathbf{y} = C\mathbf{x} \tag{A. 1. 2}$

其中x为n维状态向量,y为m维输出向量,u为p维输入向量;A, B,C为相应维数的定常矩阵。并且(A,B)可控,(A,C)可观。最优 跟踪问题是寻找最优控制律u(t),使系统的输出y(t)跟踪预期的 轨线 $\tilde{y}(t)$,且使下列性能指标最小

$$J = \frac{1}{2} (\mathbf{y}_{\rm f} - \widetilde{\mathbf{y}}_{\rm f})^{\mathsf{T}} \mathbf{S}_{\rm f} (\mathbf{y}_{\rm f} - \widetilde{\mathbf{y}}_{\rm f}) + \frac{1}{2} \int_{0}^{t_{\rm f}} [(\mathbf{y} - \widetilde{\mathbf{y}})^{\mathsf{T}} \mathbf{Q} (\mathbf{y} - \widetilde{\mathbf{y}}) + \mathbf{u}^{\mathsf{T}} \mathbf{R} \mathbf{u}] dt \qquad (A. 1. 3)$$

其中*Q*,*S*_f为非负定矩阵,*R*为正定矩阵,这一性能指标要求在跟踪 误差尽可能小的同时限制控制输入的幅度。

引入协态变量,通过变分可得对偶方程

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} - \boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{\lambda} \qquad (A. 1. 4)$$

$$\dot{\lambda} = -C^{\mathrm{T}}QCx - A^{\mathrm{T}}\lambda + C^{\mathrm{T}}Q\tilde{y} \qquad (A. 1. 5)$$

边界条件为

$$\mathbf{x}(0) = \mathbf{x}_0$$
$$\boldsymbol{\lambda}(t_{\rm f}) = \mathbf{C}^{\rm T} \mathbf{S}_{\rm f} \mathbf{C} \mathbf{x}(t_{\rm f}) - \mathbf{C}^{\rm T} \mathbf{S}_{\rm f} \widetilde{\mathbf{y}}(t_{\rm f})$$

上述对偶方程可以由变分原理

$$J_{e} = \int_{0}^{t_{f}} (-\lambda^{T} \dot{\mathbf{x}} + \lambda^{T} A \mathbf{x} - \frac{1}{2} \lambda^{T} B \mathbf{R}^{-1} B^{T} \lambda + \frac{1}{2} \mathbf{x}^{T} C^{T} Q C \mathbf{x} - \mathbf{x}^{T} C^{T} Q \widetilde{\mathbf{y}}) dt + \frac{1}{2} (\mathbf{y}_{f} - \widetilde{\mathbf{y}}_{f})^{T} S_{f} (\mathbf{y}_{f} - \widetilde{\mathbf{y}}_{f})$$
(A. 1. 6)
$$\delta J_{e} = 0$$

导出。后面将据此引入区段混合能。此跟踪问题的最优控制律为 $u(t) = -R^{-1}B^{T}[P(t)x(t) - b(t)]$ (A.1.7)

其中 P(t) 是下列 Riccati 微分方程的解

 $-\dot{P}(t) = P(t)A + A^{\mathrm{T}}P(t) - P(t)BR^{-1}B^{\mathrm{T}}P(t) + C^{\mathrm{T}}QC$ $P(t_{\mathrm{f}}) = C^{\mathrm{T}}S_{\mathrm{f}}C \qquad (A.1.8)$

而向量b(t)则满足

 $\dot{\boldsymbol{b}}(t) = - (\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{B}^{\mathrm{T}}\boldsymbol{R}^{-1}\boldsymbol{B}\boldsymbol{P}(t))\boldsymbol{b}(t) - \boldsymbol{C}^{\mathrm{T}}\boldsymbol{Q}\tilde{\boldsymbol{y}}(t)$ $\boldsymbol{b}(t_{\ell}) = \boldsymbol{C}^{\mathrm{T}}\boldsymbol{S}_{\ell}\tilde{\boldsymbol{y}}(t_{\ell}) \qquad (A. 1. 9)$

$$\boldsymbol{b}(t_{\rm f}) = \mathbf{C} \ \mathbf{S}_{\rm f} \boldsymbol{y}(t_{\rm f})$$

最优控制作用下系统的状态方程为

 $\dot{\mathbf{x}}(t) = (\mathbf{A} - \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{P}(t))\mathbf{x}(t) + \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{b}(t)$

 $\mathbf{x}(0) = \mathbf{x}_0$ (A.1.10)

确定跟踪问题的最优控制律需要求解 Riccati 微分方程(A.1.8) 及外部控制输入方程(A.1.9)。虽然这一方程是变系数方程,精细 积分法仍可以在求解 Riccati 方程的同时给出其数值解。下面将首 先引入此问题区段混合能的概念,以此为基础介绍方程的求解。

A.2 区段混合能

A.2.1 区段混合能的定义

根据变分原理(A.1.6)的形式,定义区段(t_a , t_b)的混合能为^[2]

$$V(\mathbf{x}_{a}, \boldsymbol{\lambda}_{b}) = \boldsymbol{\lambda}_{b}^{\mathrm{T}} \mathbf{x}_{b} - \int_{t_{a}}^{t_{b}} (\boldsymbol{\lambda}^{\mathrm{T}} \dot{\mathbf{x}} - \boldsymbol{\lambda}^{\mathrm{T}} \mathbf{A} \mathbf{x} - \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}} \mathbf{Q} \mathbf{C} \mathbf{x} + \frac{1}{2} \boldsymbol{\lambda}^{\mathrm{T}} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{\mathrm{T}} \boldsymbol{\lambda} + \mathbf{x}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}} \mathbf{Q} \widetilde{\mathbf{y}}) dt \qquad (A. 2. 1)$$

 $V(\mathbf{x}_a, \mathbf{\lambda}_b)$ 是 \mathbf{x}_a 与 $\mathbf{\lambda}_b$ 的二次式,可表示为

$$V(\mathbf{x}_{a}, \boldsymbol{\lambda}_{b}) = \boldsymbol{\lambda}_{b}^{\mathrm{T}} \boldsymbol{F} \boldsymbol{x}_{a} + \frac{1}{2} \boldsymbol{x}_{a}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{x}_{a} - \frac{1}{2} \boldsymbol{\lambda}_{b}^{\mathrm{T}} \boldsymbol{G} \boldsymbol{\lambda}_{b} + \boldsymbol{\lambda}_{b}^{\mathrm{T}} \boldsymbol{r}_{x} - \boldsymbol{x}_{a}^{\mathrm{T}} \boldsymbol{r}_{\lambda}$$
(A. 2. 2)

其中 E,G,F 皆为 $n \times n$ 矩阵, $E^{T} = E,G^{T} = G$,这三个矩阵决定了 混合能中的二次项。 r_x 和 r_λ 为 n 维向量,决定混合能中的一次项。 E,G,F 只与系统阵 A,B,C 及加权阵 R,Q 有关,而 r_x 和 r_λ 还与预期 轨线 $\tilde{y}(t)$ 有关。注意本章中混合能定义式中各项符号与文献 3 中 是有区别的,那里所讨论的是 Kalman 滤波问题。

令 $\tau = t_b - t_a$,经过与文献 3 中类似的推导,可以得到下面的 微分方程

$$\frac{\mathrm{d}\boldsymbol{E}}{\mathrm{d}\tau} = \boldsymbol{C}^{\mathrm{T}}\boldsymbol{Q}\boldsymbol{C} + \boldsymbol{A}^{\mathrm{T}}\boldsymbol{E} + \boldsymbol{E}\boldsymbol{A} - \boldsymbol{E}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{E} \quad (A. 2. 3a)$$
$$\frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}\tau} = \boldsymbol{F}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{F}^{\mathrm{T}} \qquad (A. 2. 3b)$$

$$\frac{d\boldsymbol{E}}{d\tau} = \boldsymbol{F}(\boldsymbol{A} - \boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{E}) \qquad (A. 2. 3c)$$

$$\frac{\mathrm{d}\boldsymbol{r}_{\boldsymbol{x}}}{\mathrm{d}\boldsymbol{\tau}} = \boldsymbol{F}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{r}_{\boldsymbol{\lambda}} \tag{A. 2. 4a}$$

$$\frac{\mathrm{d}\boldsymbol{r}_{\lambda}}{\mathrm{d}\tau} = (\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{E}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}})\boldsymbol{r}_{\lambda} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{Q}\tilde{\boldsymbol{y}} \qquad (\mathrm{A.}\ 2.\ 4\mathrm{b})$$

当 $t_a \rightarrow t_b$ 时,有初值条件

 $E \rightarrow 0, G \rightarrow 0, F \rightarrow I_n, r_x \rightarrow 0, r_\lambda \rightarrow 0$ (A. 2. 5) 其中 I_n 为 n 阶单位阵。设在 (t_a, t_b) 区段内, $\tilde{y}(t)$ 为线性变化, 则 $\tilde{y}(t)$ 可以由 $Y_0 = I_q$ 及 $Y_1 = \tau I_q$ 矩阵的 2q 个列向量线性组合而成, I_q 为 q 阶单位阵。从而可以将向量微分方程 (A. 2. 4) 转化为等价的 矩阵微分方程。

$$\frac{\mathrm{d}\boldsymbol{R}_{x}}{\mathrm{d}\tau} = \boldsymbol{F}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{R}_{\lambda} \qquad (A. 2. 6a)$$

 $\frac{\mathrm{d}\boldsymbol{R}_{\lambda}}{\mathrm{d}\tau} = (\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{E}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}})\boldsymbol{R}_{\lambda} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{Q}\widetilde{\boldsymbol{Y}} \qquad (\mathrm{A.}\ 2.\ 6\mathrm{b})$

其中 \tilde{Y} 是 $\tilde{y}(t)$ 的基底向量构成的矩阵。

将 $Y_0 = I_q$ 代入上述方程中积分所得矩阵记作 $R_x^{(0)}(\tau)$, $R_\lambda^{(0)}(\tau)$,即

$$\frac{\mathrm{d}\boldsymbol{R}_{\boldsymbol{x}}^{(0)}}{\mathrm{d}\tau} = \boldsymbol{F}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{T}\boldsymbol{R}_{\boldsymbol{\lambda}}^{(0)} \qquad (A. 2. 7a)$$

 $\frac{\mathrm{d}\boldsymbol{R}_{\lambda}^{(0)}}{\mathrm{d}\tau} = (\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{E}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}})\boldsymbol{R}_{\lambda}^{(0)} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{Q}\boldsymbol{I}_{q} \quad (\mathrm{A.}\,2.\,7\mathrm{b})$

将 $Y_1 = \tau I_q$ 代入上述方程中积分得到的矩阵记作 $R_x^{(1)}(0,\tau)$, $R_{\lambda}^{(1)}(0,\tau)$, 即

$$\frac{\mathrm{d}\boldsymbol{R}_{\boldsymbol{x}}^{(1)}}{\mathrm{d}\tau} = \boldsymbol{F}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{T}\boldsymbol{R}_{\lambda}^{(1)} \qquad (A. 2. 8a)$$

 $\frac{\mathrm{d}\boldsymbol{R}_{\lambda}^{(1)}}{\mathrm{d}\tau} = (\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{E}\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}})\boldsymbol{R}_{\lambda}^{(1)} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{Q}\tau\boldsymbol{I}_{q} \quad (\mathrm{A.}\ 2.\ 8\mathrm{b})$

方程(A.2.3a)(A.2.4b)时间逆向后分别对应于方程

(A.1.8)和(A.1.9),但在初值条件上有差别。这里的微分方程形 式与文献3中的方程是一致的,但因为是控制问题,所用的是一组 时间逆向的方程,而文献3中的滤波问题用到的是一组时间正向 的方程。上述方程都可以通过区段合并公式来求解,这是精细积分 法求解的特点之一,下面给出区段合并公式。

A.2.2 区段合并公式

微分方程(A.2.3)及(A.2.4)的数值求解用常规差分方法一 般比较困难,方程(A.2.4)中的时变系数也增加了求解的复杂程 度。按照精细积分方法,这些微分方程的解是区段混合能矩阵,相 邻区段合并后的新区段混合能矩阵可以通过区段合并消元得到, 递推进行可以得到整个区间内不同长度区段的混合能矩阵^[2]。这 些混合能矩阵就是微分方程在相应时刻的数值解。

图 A.1 所示相邻的两个区段(t_a , t_b)及(t_b , t_c)可以通过对 x_b , λ_b 的消元合并成区段(t_a , t_c),其相应的矩阵 E_c , G_c , F_c 可以由原来两 个区段的混合能矩阵来表示。

图 A.1 区段合并

从混合能的一般型(A.2.2) 可以导出区段合并消元公式

 $E_{c} = E_{1} + F_{1}^{T}(E_{2}^{-1} + G_{1})^{-1}F_{1}$ (A. 2. 9a) $G_{c} = C_{2} + F_{2}(G_{1}^{-1} + E_{2})^{-1}F_{2}^{T}$ (A. 2. 9b) $F_{c} = F_{2}(I + G_{1}E_{2})^{-1}F_{1}$ (A. 2. 9c) $r_{\lambda c} = \lambda_{\lambda 1} + F_{1}^{T}(I + E_{2}G_{1})^{-1}(r_{\lambda 2} - E_{2}r_{x1})$ (A. 2. 10a) $r_{xc} = r_{x2} + F_{2}(I + G_{1}E_{2})^{-1}(r_{x1} + G_{1}r_{\lambda 2})$ (A. 2. 10b) 式(A. 2. 10) 为向量形式,其矩阵形式为

(A. 2. 11a)

 $\boldsymbol{R}_{\boldsymbol{x}_{c}} = \boldsymbol{R}_{\boldsymbol{x}_{2}} + \boldsymbol{F}_{2}(\boldsymbol{I} + \boldsymbol{G}_{1}\boldsymbol{E}_{2})^{-1})(\boldsymbol{R}_{\boldsymbol{x}_{1}} + \boldsymbol{G}_{2}\boldsymbol{R}_{\boldsymbol{\lambda}_{2}})$

(A. 2. 11b)

这些公式与文献 3 中的区段合并公式完全相同,这一点是由混合 能矩阵 $V(\mathbf{x}_a, \boldsymbol{\lambda}_b)$ 的一般型表达式(A. 2. 2) 导致的。

A.3 Riccati 方程与最优控制律的精细积分

将方程(A.2.3a)及(A.2.4b)的时间逆向就得到Riccati方程 (A.1.8)及外部控制输入方程(A.1.9),差别仅在初值条件上。求 它们的数值解可通过区段合并公式(A.2.9)和(A.2.11)进行。首 先设定步长 η 及需进行计算的时间点

 $t_0 = 0, t_1 = \eta, t_2 = 2\eta, \dots, t_k = k\eta, \dots, t_f = k_f\eta$ (A. 3. 1) 求方程在这些时间点的数值解,就是求长度分别为 $k_f\eta, \dots k\eta,$ …2 η, η 的区段混合能矩阵。

在步长 η 的基础上,再进一步将 η 划分为 2^{N} 段,一般选用 N = 20,则 $2^{N} = 1048576$,于是步长成为

 $\tau = \eta/2^N \approx \eta \cdot 10^{-6} \tag{A. 3. 2}$

A.3.1 n区段矩阵计算

由于 $R_x^{(1)}(0,\tau)$ 和 $R_\lambda^{(1)}(0,\tau)$ 的特殊性,需单独介绍其算法。首 先对区段矩阵 $E(\tau), G(\tau), F(\tau), R_x^{(0)}(\tau), R_\lambda^{(0)}(\tau)$ 作 Taylor 级数展 开

 $\boldsymbol{E}(\tau) \approx \boldsymbol{e}_1 \tau + \boldsymbol{e}_2 \tau^2 + \boldsymbol{e}_3 \tau^3 + \boldsymbol{e}_4 \tau^4 \qquad (A. 3. 3a)$

 $\boldsymbol{G}(\tau) \approx \boldsymbol{g}_1 \tau + \boldsymbol{g}_2 \tau^2 + \boldsymbol{g}_3 \tau^3 + \boldsymbol{g}_4 \tau^4$ (A. 3. 3b)

 $F(\tau) \approx I + f_1 \tau + f_2 \tau^2 + f_3 \tau^3 + f_4 \tau^4 = I + F'(\tau)$ (A. 3. 3c)

 $\boldsymbol{R}_{r}^{(0)}(\tau) \approx \boldsymbol{\rho}_{r01}\tau + \boldsymbol{\rho}_{r02}\tau^{2} + \boldsymbol{\rho}_{r03}\tau^{3} + \boldsymbol{\rho}_{r04}\tau^{4} \quad (A. 3. 4a)$ $\boldsymbol{R}_{\boldsymbol{\lambda}}^{(0)}(\tau) \approx \boldsymbol{\rho}_{\lambda 01} \tau + \boldsymbol{\rho}_{\lambda 02} \tau^2 + \boldsymbol{\rho}_{\lambda 03} \tau^3 + \boldsymbol{\rho}_{\lambda 04} \tau^4 \quad (A. 3. 4b)$ 这组公式与微分方程的初值条件(A.2.5)是相容的。 将式(A, 3, 3)代入微分方程(A, 2, 3),对比各幂次有 $e_1 = C^{\mathrm{T}} O C$ $e_2 = (f_1^{\mathrm{T}} e_1 + e_1 f_1)/2$ $\boldsymbol{e}_{3} = (\boldsymbol{f}_{2}^{\mathrm{T}}\boldsymbol{e}_{1} + \boldsymbol{e}_{1}\boldsymbol{f}_{2} + \boldsymbol{f}_{1}^{\mathrm{T}}\boldsymbol{e}_{1}\boldsymbol{f}_{1})/3$ $e_4 = (f_3^{\mathrm{T}} e_1 + e_1 f_3 + f_2^{\mathrm{T}} e_1 f_1 + f_1^{\mathrm{T}} e_1 f_2)/4$ (A. 3. 5a) $\boldsymbol{g}_1 = \boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}$ $\boldsymbol{g}_2 = (\boldsymbol{A}\boldsymbol{g}_1 + \boldsymbol{g}_1\boldsymbol{A}^{\mathrm{T}})/2$ $\boldsymbol{g}_{2} = (\boldsymbol{A}\boldsymbol{g}_{2} + \boldsymbol{g}_{2}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{g}_{1}\boldsymbol{e}_{1}\boldsymbol{g}_{1})/3$ $\boldsymbol{g}_{4} = (\boldsymbol{A}\boldsymbol{g}_{3} + \boldsymbol{g}_{3}\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{g}_{2}\boldsymbol{e}_{1}\boldsymbol{g}_{1} - \boldsymbol{g}_{1}\boldsymbol{e}_{1}\boldsymbol{g}_{2})/4$ (A. 3. 5b) $f_1 = A$ $f_2 = (Af_1 - g_1e_1)/2$ $f_3 = (Af_2 - g_2e_1 - g_1e_1f_1)/3$ $f_4 = (Af_3 - g_3e_1 - g_2e_1f_1 - g_1e_1f_2)/4$ (A. 3. 5c) 将式(A.3.4)代入微分方程(A.2.4),对比各幂次有 $\rho_{r^{01}} = 0$ $\boldsymbol{\rho}_{r02} = \boldsymbol{g}_{1}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{Q}/2$ $\boldsymbol{\rho}_{r03} = (\boldsymbol{A}\boldsymbol{\rho}_{r02} + \boldsymbol{g}_{2}\boldsymbol{C}^{\mathrm{T}}\boldsymbol{O})/3$ $\boldsymbol{\rho}_{x04} = (A \boldsymbol{\rho}_{x03} - \boldsymbol{g}_1 \boldsymbol{e}_1 \boldsymbol{\rho}_{x02} + \boldsymbol{g}_3 \boldsymbol{C}^{\mathrm{T}} \boldsymbol{Q})/4$ (A. 3. 6a) $\boldsymbol{\rho}_{\lambda 01} = \boldsymbol{C}^{\mathrm{T}} \boldsymbol{O}$ $\boldsymbol{\rho}_{102} = \boldsymbol{f}_{1}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{Q}/2$ $\boldsymbol{\rho}_{\lambda_{03}} = (\boldsymbol{f}_{2}^{\mathrm{T}}\boldsymbol{C}^{\mathrm{T}}\boldsymbol{O} - \boldsymbol{e}_{1}\boldsymbol{\rho}_{x_{02}})/3$ $\boldsymbol{\rho}_{104} = (\boldsymbol{f}_{3}^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{Q} - \boldsymbol{f}_{1}^{\mathrm{T}} \boldsymbol{e}_{1} \boldsymbol{\rho}_{r02} - \boldsymbol{e}_{1} \boldsymbol{\rho}_{r03})/4 \qquad (\mathrm{A.3.6b})$

对于相邻的区段,其 $E(\tau)$, $G(\tau)$, $F(\tau)$, $R_x^{(0)}(\tau)$, $R_\lambda^{(0)}(\tau)$ 矩阵是相同的,因而由 τ 时段的矩阵通过执行区段合并公式 N 次来计算 η 时

段的相应矩阵并不需要其它的步骤,为避免损失有效数位,在这一 计算阶段不能使用合并公式(A.2.9c),而要代之以

 $F'_{c} = F'_{1} + F'_{2} + F'_{2}F'_{1} - (I + F'_{2})(E^{-1}_{2}G^{-1}_{1} + I)^{-1}(I + F'_{1})$ (A, 2, 9c')

因为矩阵 $R_{1}^{(1)}(0,\tau)$ 和 $R_{2}^{(1)}(0,\tau)$ 满足的微分方程是式 (A, 2, 8a)(A, 2, 8b),其中含有 τ ,所以对于相邻的两个区段 $(0, \tau)$ $\mathbf{n}(\tau, 2\tau), \mathbf{R}_{11}^{(1)}, \mathbf{R}_{21}^{(1)}$ 和 $\mathbf{R}_{22}^{(1)}, \mathbf{R}_{22}^{(1)}$ 是不相同的。但依据叠加性原理及 预期轨线 $\tilde{\mathbf{v}}(t)$ 在 η 长区段内线性变化的前提,也可以得到适用于 2^{N} 算法的表达式。

数

 $\boldsymbol{R}_{r1}^{(1)} = \boldsymbol{R}_{r}^{(1)}(0,\tau) \quad \boldsymbol{R}_{21}^{(1)} = \boldsymbol{R}_{2}^{(1)}(0,\tau) \quad (A. 3. 7a)$ $\boldsymbol{R}_{r_{2}}^{(1)} = \tau \boldsymbol{R}_{r}^{(0)}(\tau) + \boldsymbol{R}_{r}^{(1)}(0,\tau) \quad \boldsymbol{R}_{\lambda_{2}}^{(1)} = \tau \boldsymbol{R}_{\lambda}^{(0)}(\tau) + \boldsymbol{R}_{\lambda}^{(1)}(0,\tau)$ (A. 3, 7b)

式(A. 3.7) 中的 $R_r^{(0)}(\tau)$, $R_\lambda^{(0)}(\tau)$ 当然由式(A. 3.4) 计算, 而 $R_r^{(1)}(0,\tau)$ 和 $R_\lambda^{(1)}(0,\tau)$ 则由其 Taylor 展开式

 $\boldsymbol{R}_{r}^{(1)}(0,\tau) \approx \boldsymbol{\rho}_{r11}\tau + \boldsymbol{\rho}_{r12}\tau^{2} + \boldsymbol{\rho}_{r13}\tau^{3} + \boldsymbol{\rho}_{r14}\tau^{4}$ (A. 3. 8a) $\boldsymbol{R}_{\boldsymbol{\lambda}}^{(1)}(0,\tau) \approx \boldsymbol{\rho}_{\lambda 11}\tau + \boldsymbol{\rho}_{\lambda 12}\tau^2 + \boldsymbol{\rho}_{\lambda 13}\tau^3 + \boldsymbol{\rho}_{\lambda 14}\tau^4 \quad (A. 3. 8b)$ 来计算。将式(A, 3, 8) 代入(A, 2, 8),比较同幂次得到上式中的系

$$\rho_{x11} = \mathbf{0}$$

$$\rho_{x12} = \mathbf{0}$$

$$\rho_{x13} = g_1 C^T \mathbf{Q} / 3$$

$$\rho_{x14} = (A\rho_{x13} + g_2 C^T \mathbf{Q}) / 4 \qquad (A. 3. 9a)$$

$$\rho_{\lambda 11} = \mathbf{0}$$

$$\rho_{\lambda 12} = C^T \mathbf{Q} / 2$$

$$\rho_{\lambda 13} = f_1^T C^T \mathbf{Q} / 3$$

 $\boldsymbol{\rho}_{\lambda 14} = (\boldsymbol{f}_2^{\mathrm{T}} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{Q} - \boldsymbol{e}_1 \boldsymbol{\rho}_{x 13})/4 \qquad (\mathrm{A.}\ 3.\ 9\mathrm{b})$

计算 η 区段各矩阵 $E(\eta)$, $G(\eta)$, $F(\eta)$, $R_x^{(0)}(\tau)$, $R_\lambda^{(0)}(\tau)$, $R_x^{(1)}(0$, τ), $R_x^{(1)}(0,\tau)$ 的步骤为:

step 1 由式 (A. 3. 3)(A. 3. 4) 计算 $E(\tau), G(\tau), F'(\tau),$ $R_x^{(0)}(\tau), R_\lambda^{(0)}(\tau)$ 作为 $E_c, G_c, F'_c, R_{xc}^{(0)}, R_{\lambda c}^{(0)}$ 。

step 3 For
$$(iter = 0; iter < N; iter ++)$$
 {

 $\{E_{1} = E_{2} = E_{c}; G_{1} = G_{2} = G_{c}; F_{1}' = F_{2}' = F_{c}'; R_{x1}^{(0)} = R_{x2}^{(0)} = R_{xc}^{(0)}; R_{\lambda1}^{(0)} = R_{\lambda2}^{(0)} = R_{\lambda c}^{(0)}\}$

{按式(A. 3. 7a)(A. 3. 7b) 计算 $R_{x1}^{(1)}, R_{x2}^{(1)}, R_{\lambda_1}^{(1)}, R_{\lambda_2}^{(1)};$ 并执行 $\tau = \tau + \tau$ }

{ 按式 (A. 2. 9a)(A. 2. 9b)(A. 2. 9c')(A. 2. 11a) (A. 2. 11b) 计算新的 $E_{e}, G_{e}, F'_{e}, R^{(0)}_{xe}, R^{(0)}_{\lambda e} \gtrsim R^{(1)}_{x}(0, \tau)$ $\tau), R^{(1)}_{\lambda}(0, \tau)$ }

Step 4 $F_c = I + F'_c$

A.3.2 Riccati 方程的精细积分

计算出 $E(\eta)$, $G(\eta)$, $F(\eta)$ 后,就可以依据区段合并公式递推 计算长度为 2η , 3η ···· $k\eta$ 区段的矩阵。设已计算了 $k\eta$ 长的区段,以它 为区段 2,而 η 长的区段为区段 1,运用式(A. 2. 9a) ~ (A. 2. 9c) 就 可以算出(k + 1) η 的E,G,F 直至 $k_i\eta$ 。但此时的E阵还不满足微分 方程(A. 1. 8) 的边界条件。为此设在 t_f 处有一集中区段,该区段的 混合能矩阵为 $E_2 = S_f$, $F_2 = I$, $G_2 = 0$ 。计算 $t_k = k\eta$ 处 Riccati 方程 (A. 1. 8) 的解时,以前面计算的长度为($k_f - k$) η 的区段作为区段 1 与该集中区段按下式进行合并消元

 $\boldsymbol{P}(t) = \boldsymbol{E} + \boldsymbol{F}^{\mathrm{T}}(\boldsymbol{S}_{\mathrm{f}}^{-1} + \boldsymbol{G})^{-1}\boldsymbol{F} = \boldsymbol{E} + \boldsymbol{F}^{\mathrm{T}}(\boldsymbol{I} + \boldsymbol{S}_{\mathrm{f}}\boldsymbol{G})^{-1}\boldsymbol{S}_{\mathrm{f}}\boldsymbol{F}$

(A. 3. 10)

 $\boldsymbol{F}_{p}(t) = (\boldsymbol{I} + \boldsymbol{G}\boldsymbol{S}_{f})^{-1}\boldsymbol{F}$ (A. 3. 11)

 $G_{p}(t) = (G^{-1} + S_{f})^{-1}$ (A. 3. 12) 即可得到 $t_{k} = k\eta$ 处 Riccati 方程(A. 1. 8) 的解以及另外两个微分 方程(A. 2. 3b), (A. 2. 3c) 在初值条件变化后在 t_{k} 的解。令 $\frac{d}{d\tau} = -\frac{d}{dt}$, 对式(A. 3. 10) 两边求导,并利用恒等式

$$\frac{d}{dt}(X^{-1}) = -X^{-1}\dot{X}X^{-1}$$
 (A. 3. 13)

及 E,G,F 所满足的微分方程(A.2.5a) ~ (A.2.5c) 可以得到

$$\frac{d\mathbf{P}}{dt} = -\mathbf{A}^{\mathrm{T}}\mathbf{P}(t) - \mathbf{P}(t)\mathbf{A} - \mathbf{C}^{\mathrm{T}}\mathbf{Q}\mathbf{C} + \mathbf{P}(t)\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{P}(t)$$

(A. 3. 14)

这就是式(A.1.8);注意到当 $t = t_f$ 时,E = G = 0,F = I,由式 (A.3.10)可知末端条件 $P(t_f) = S_f$ 也得到满足,所以按(A.3.10) 计算的 P(t)就是 Riccati 方程的解。

求解 Riccati 方程(A.1.8) 按照下面的顺序:首先按初值条件 (A.2.5) 求解式(A.2.3a) ~ (A.2.3.c),然后用(A.3.10) 计算终 端条件为 S_f 时的解。这样计算的好处是末端条件 S_f 是最后才进入 计算过程,当需要修改 S_f 进行重新设计时,前半部分不用重算,从 而减少许多计算工作量。Riccati 方程(A.1.8) 的精细积分解可表 示为

 $\boldsymbol{P}(t_k) = \boldsymbol{E}((k_{\rm f} - k)\eta) + \boldsymbol{F}^{\rm T}((k_{\rm f} - k)\eta)$

 $[S_{f}^{-1} + G((k_{f} - k)\eta)]^{-1}F((k_{f} - k)\eta) \quad (A. 3. 15)$ A. 3. 3 向量 b(t)的精细积分

为利用精细积分法求解外部控制输入的微分方程(A.1.9), 首先考察式(A.3.11)中 F_p 所满足的微分方程。令 $\frac{d}{d\tau} = -\frac{d}{dt}$,利用 恒等式(A.3.13),可以证明

 $\frac{\mathrm{d}\boldsymbol{F}_{\rho}}{\mathrm{d}t} = -\boldsymbol{F}_{\rho}[\boldsymbol{A} - \boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{P}(t)] \qquad (\mathrm{A.\,3.\,16})$

进而导出

$$\frac{\mathrm{d}\boldsymbol{F}_{\boldsymbol{\rho}}^{\mathrm{T}}}{\mathrm{d}t} = -\left[\boldsymbol{A}^{\mathrm{T}} - \boldsymbol{P}(t)\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\right]\boldsymbol{F}_{\boldsymbol{\rho}}^{\mathrm{T}} \qquad (\mathrm{A.}\ 3.\ 17)$$

与外部控制输入 b(t) 的微分方程比较可知 F_{ρ}^{T} 的各列向量满足方 程(A.1.9) 的齐次方程,并且由于 $F_{\rho}^{T}(t_{i}) = I$,方程(A.1.9) 的齐 次方程在初值条件为 $b(t_{i})$ 时的解为 $F_{\rho}^{T}(t)b(t_{i})$ 。根据线性微分方 程解的叠加性原理,再叠加上零初值条件时非齐次方程(A.1.9) 的 解就可以构成方程(A.1.9) 完整的解。为此仍然设在 t_{i} 处有一 集中区段,该区段的混合能矩阵为 $E_{2} = S_{i}$, $F_{2} = I$, $G_{2} = 0$, $R_{x2} =$ 0, $R_{\lambda 2} = 0$,将前面计算的长度为($k_{i} - k$) η 的区段作为区段 1 与之 进行合并消元

$$\boldsymbol{R}_{x\rho}(t) = (\boldsymbol{I} + \boldsymbol{G}\boldsymbol{S}_{\mathrm{f}})^{-1}\boldsymbol{R}_{x} \qquad (A. 3. 18a)$$
$$\boldsymbol{R}_{\lambda\rho}(t) = \boldsymbol{R}_{\lambda} - \boldsymbol{F}^{\mathrm{T}}(\boldsymbol{I} + \boldsymbol{S}_{\mathrm{f}}\boldsymbol{G})^{-1}\boldsymbol{S}_{\mathrm{f}}\boldsymbol{R}_{x} = \boldsymbol{R}_{\lambda} - \boldsymbol{F}_{\rho}^{\mathrm{T}}\boldsymbol{S}_{\mathrm{f}}\boldsymbol{R}_{x}$$

(A. 3. 18b)

可以得到方程(A. 2. 6b) 零初值条件时在 t_k 处的解。注意与文献 [3] 中相应公式的区别。令 $\frac{d}{d\tau} = -\frac{d}{dt}$,可以得到 $\frac{\partial R_{\lambda\rho}}{\partial t} = \frac{\partial R_{\lambda}}{\partial t} - \frac{\partial F_{\rho}^{T}}{\partial t}S_{f}R_{x} - F_{\rho}^{T}S_{f}\frac{\partial R_{x}}{\partial t} =$ $- (A^{T} - EBR^{-1}B^{T})R_{\lambda} + (A^{T} - PBR^{-1}B^{T})F_{\rho}^{T}S_{f}R_{x} +$ $F_{\rho}^{T}S_{f}FBR^{-1}B^{T}R_{\lambda} - C^{T}Q\tilde{Y} =$ $[A^{T} - (E + F_{\rho}^{T}S_{f}F)BR^{-1}B^{T}]R_{\lambda} +$ $(A^{T} - PBR^{-1}B^{T})F_{\rho}^{T}S_{f}R_{x} - C^{T}Q\tilde{Y} =$ $- (A^{T} - PBR^{-1}B^{T})(R_{\lambda} - F_{\rho}^{T}S_{f}R_{x}) - C^{T}Q\tilde{Y} =$ $- (A^{T} - PBR^{-1}B^{T})R_{\lambda\rho} - C^{T}Q\tilde{Y} =$ $- (A^{T} - PBR^{-1}B^{T})R_{\lambda\rho} - C^{T}Q\tilde{Y}$ (A. 3. 19)

与(A.1.9)比较可知, $R_{\lambda p}$ 的各列向量满足方程(A.1.9),又因为 $\tilde{y}(t)$ 是由 \tilde{Y} 线性组合而成,所以b(t)可以由 $R_{\lambda p}$ 按同样的方式线性 组合构成,这就是零初值条件下非齐次方程的解。因为已知条件是 b(t)在 t_{f} 的值为 $b(t_{f})$,所以b(t)是逆向递推计算得到的。这时可以 采用时间移轴的方法,设已经积分到 t_{k} 处,以 $P(t_{k})$ 构成区段混合 能[$P(t_{k})$,0,I] 与单步长 η 的混合能矩阵[$E(\eta)$, $G(\eta)$, $F(\eta)$] 进行 合并运算。按式(A. 3. 11) 得到单步长的 $F_{p}(t_{k-1})$,按式(A. 3. 18b) 得到单步长的 $R_{\lambda p}^{(0)}(t_{k-1})$ 及 $R_{\lambda p}^{(1)}(t_{k-1})$ 。以 $b(t_{k})$ 作为已知条件,再向 前积分一步。具体来讲,外部控制输入向量b(t)在 $t_{k-1} = (k-1)\eta$ 处的值可以表示为

 $\boldsymbol{b}(t_{k-1}) = \boldsymbol{F}_{p}^{\mathrm{T}}(t_{k-1})\boldsymbol{b}(t_{k}) + \boldsymbol{R}_{\lambda p}^{(0)}(t_{k-1})\widetilde{\boldsymbol{y}}(t_{k}) +$

 $\boldsymbol{R}_{\lambda p}^{(1)}(t_{k-1}) \big[\widetilde{\boldsymbol{y}}(t_{k-1}) - \widetilde{\boldsymbol{y}}(t_k) \big]$ (A. 3. 20)

因为最优跟踪问题的预期轨线是完全知道的,所以b(t)可以 提前离线求出,Riccati 方程的解P(t)也是离线求出的。由式 (A.1.7)可知,至此最优跟踪控制律所需数据已经完备,只需将状 态进行反馈即可构成闭环最优跟踪控制系统。

A.4 最优跟踪系统响应的精细积分

系统在最优控制作用下的状态方程为(A.1.10),系统响应可 以表示为

$$\boldsymbol{x}(t) = \boldsymbol{\Phi}(t,0)\boldsymbol{x}_0 + \int_0^t \boldsymbol{\Phi}(t,t_d)\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{b}(t_d)\mathrm{d}t_d \quad (\mathrm{A.}\ 4.\ 1)$$

 $\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{b}(t_{k+1})]\boldsymbol{\eta}/2 \tag{A. 4. 2}$

而单步长 η 的状态转移矩阵 $\phi(t_k + \eta, t_k)$ 按下式计算

A.5 LQ 最优跟踪算例

这里给出两个对系统初值响应进行跟踪的数值算例。由于利 用了精细积分法的特点,最优跟踪系统的设计与仿真可同时完成。 算例 1.

给定二阶系统数据如下

 $\boldsymbol{A} = \begin{bmatrix} 0 & -1 \\ 39.4 & -3.8 \end{bmatrix} \quad \boldsymbol{B} = \begin{bmatrix} 10 \\ 10 \end{bmatrix} \quad \boldsymbol{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\boldsymbol{Q} = \begin{bmatrix} 100 & 0 \\ 0 & 1 \end{bmatrix} \quad \boldsymbol{S}_{f} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \quad t_{f} = 3$

分别对两种不同初值条件时系统的响应进行跟踪系统的设计与仿 真。图 A.2 中的虚线是初值条件为 $x_0 = (5,5)^T$ 时系统的响应曲 线,实线为零初值条件下系统在最优控制作用下的跟踪曲线。图 A.4 中的虚线为初值条件为 $x_0 = (-1,10)^T$ 时系统的响应曲线, 实 线为零初值条件下在最优控制作用下的跟踪曲线,由图中可见 在 0.5 秒内均可实现误差很小的跟踪。*R* 是性能指标中的加权矩 阵,体现了对控制输入幅值的要求,图 A.3 和图 A.5 分别给出了 *R* 变化后系统的跟踪曲线。

图 A.2 $x_0 = (5,5)^T$ 时系统的响应和跟踪曲线(R = 10)

图 A.3 $x_0 = (5,5)^T$ 时系统的响应和跟踪曲线(R = 0.1)

图 A.4 $x_0 = (-1, 10)^{T}$ 时系统的响应和跟踪曲线(R = 10)

图 A.5 $x_0 = (-1, 10)^T$ 时系统的响应和跟踪曲线(R = 0.1)
算例 2:

三阶系统数据如下:

同 样分别对两种不同初值条件下系统的响应进行跟踪。图 A.6 中的虚线为初值条件为 $x_0 = (-5,5, -5)^T$ 时系统的响应曲线,实

图 A.6 $x_0 = (-5, 5, -5)^T$ 时系统的响应和跟踪曲线(R = 10)

线为系统在零初值条件及最优控制作用下的跟踪曲线。图 A.7 为 初值条件 $x_0 = (10,10,10)^T$ 时系统的响应曲线及跟踪曲线。 图 A.8 为初值条件 $x_0 = (-10, -10, -10)^T$ 时系统的响应曲线 及跟踪曲线。图 A.9 和图 A.10则是加权矩阵 R 变化后系统的响应 和跟踪曲线。

图 A.7 $x_0 = (10, 10, 10)^T$ 时系统的响应和跟踪曲线(R = 10)

一个系统跟踪能力的强弱是由其闭环部分的动态特性所决定 的,即状态的线性反馈部分所决定¹¹。本章的算例是跟踪系统本身 的初值响应,跟踪效果较好,而对于任意预期轨线及外界干扰影响 下的跟踪问题,则不一定会有这样的结果。但这属于系统设计问 题,这里不作更多的讨论,因为本章主要是介绍最优跟踪系统设计 和仿真问题的算法。

A.6 H_{∞} 跟踪问题

在前文中已经看到,跟踪问题一般要求在极小化性能指标的 前提下系统的输出尽量接近所希望的轨线。但由于按照LQG方法 设计的最优跟踪系统鲁棒性较差,因此 H_∞ 优化方法被用来设计 具有鲁棒性的跟踪系统^[4]。通常的办法是把要跟踪的信号作为影 响 量测信号和目标函数的干扰,从而使跟踪问题转化为标准 H_∞ 设 计问题进行求解。这一方法的主要缺点在于假设参考信号是任 意的,但实际上对其都有一定程度的了解,所以在任意性假设基础 上 设计的系统往往过分强调了系统的跟踪特性,从而可能削弱系 统的抗干扰能力。另一种方法是用博弈论的方法求解 H_∞ 跟踪问 题,在此框架内可以按照特定的参考信号极小化性能指标泛函,因 而可以克服按照标准 H_∞ 设计问题求解所遇到的困难^[4]。博弈论 方法所得的 H_∞ 跟踪问题可解性条件与标准 H_∞ 设计问题的条件 类似^[5],都需要判断 Riccati 方程解的存在性,只有求解该方程后 方可构造控制系统。当然对于有限时间问题是 Riccati 微分方程, 而无限时间问题则要求解 Riccati 代数方程。

求解有限时间 H_{∞} 跟踪问题时,需要求解含参数 γ 的 Riccati 微分方程,其中的 γ 是度量受控系统跟踪性能的一个指标。这里介 绍用精细积分方法判断 H_{∞} 跟踪问题可解性的过程,具体来讲就 是判断 Riccati 微分方程解是否存在并求解该方程,同时计算临界 最优参数值 γ_{out} 。

考虑如下线性定常系统的跟踪问题

 $\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}_1\boldsymbol{w}(t) + \boldsymbol{B}_2\boldsymbol{u}(t) + \boldsymbol{B}_3\boldsymbol{r}(t), \boldsymbol{x}(0) = \boldsymbol{x}_0$

(A. 6. 1)

 $z(t) = C_1 x(t) + D_{12} u(t) + D_{13} r(t)$ (A. 6. 2)

 $\mathbf{y}(t) = \mathbf{C}_2 \mathbf{x}(t) + \mathbf{D}_{21} \mathbf{w}(t) + \mathbf{v}(t)$ (A. 6. 3)

其中x(t)为n维状态向量, x_0 是系统初始状态向量,w(t)为p维外 扰向量,u(t)为m维控制向量,r(t)是已知或可测的参考信号, y(t)为k维量测向量,v(t)为k维量测噪声,z(t)为q维被控向量。 z(t)是系统输出 $C_1x(t) + D_{12}u(t)$ 与参考轨迹 $- D_{13}r(t)$ 之间的跟 踪误差。

所谓 H_{∞} 跟踪问题就是根据量测 $y(\cdot)$ 及参考信号 $r(\cdot)$ 设计 区间[0, t_{f}]上的控制律 $u(\cdot)$,并尽可能地减小初始状态不确定性、 干扰 w(t) 及测量噪声 v(t)等因素对被控输出 z(t) 的影响。一般通 过极小化下列泛函指标来达到要求

 $J(\mathbf{r}, \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}_{0}) = \| \mathbf{z} \|_{2}^{2} - \gamma^{2} \| \mathbf{w} \|_{2}^{2} + \| \mathbf{v} \|_{2}^{2} + \| \mathbf{x}_{0} \|_{R^{-1}}^{2}$ (A. 6. 4)

其中 $\gamma > 0$ 是表征受控系统跟踪性能的指标, $R = R^T > 0$ 是初始状态的加权函数,可以表征初始状态不确定性与w(t),v(t)不确定性

之间的相对大小。式中 $\| \mathbf{x}_0 \|_{R^{-1}}^2 = \mathbf{x}_0^T \mathbf{R}^{-1} \mathbf{x}_0$, 而 $\| \cdot \|_2$ 表示 $L_2[0, t_i]$ 范数,其定义为 $\| \mathbf{w} \|_2^2 = \int_0^{t_i} \mathbf{w}^T \mathbf{w} d\tau$ 。下面引述文献 4 中给出的 H_∞ 跟踪问题可解性的条件,为简明起见,仅以参考信号完全已知的情况为例,其它条件时的结论相同。

状态反馈 H_{∞} 跟踪问题:给定 $\gamma > 0$,系统(1)的所有状态可以 完全不受干扰地测量,则 H_{∞} 跟踪问题可解的充要条件为 Riccati 微分方程

 $-\dot{X}(t) = (A - B_2 V_1 D_{12}^{\mathrm{T}} C_1)^{\mathrm{T}} X + X(A - B_2 V_1 D_{12}^{\mathrm{T}} C_1) + C_1^{\mathrm{T}} (I -$

 $\boldsymbol{D}_{12}\boldsymbol{V}_1\boldsymbol{D}_{12}^{\mathrm{T}}\boldsymbol{)}\boldsymbol{C}_1 - \boldsymbol{X}(\boldsymbol{B}_2\boldsymbol{V}\boldsymbol{B}_2^{\mathrm{T}} - \boldsymbol{\gamma}^{-2}\boldsymbol{B}_1\boldsymbol{B}_1^{\mathrm{T}})\boldsymbol{X} \qquad (\mathrm{A.}\ 6.\ 5)$ $\boldsymbol{X}(t_{\mathrm{f}}) = \boldsymbol{0}$

在区间[0, t_{f}]上的解存在,且 $X(0) < \gamma^{2} R^{-1}$ 。其中 $V_{1} = (D_{12}^{T} D_{12})^{-1}$ 。

输 出反馈 H_{∞} 跟踪问题: 给定 $\gamma > 0$, 系统 (A. 6. 1) ~ (A. 6. 3) H_{∞} 跟踪问题可解的充要条件为:

1. Riccati 微分方程(A. 6. 5) 在区间 $[0, t_f]$ 上的解存在,且 $X(0) < \gamma^2 R^{-1}$ 。

2. Riccati 微分方程

 $\dot{\boldsymbol{Y}}(t) = (\boldsymbol{A} - \boldsymbol{B}_1 \boldsymbol{D}_{21}^{\mathrm{T}} \boldsymbol{V}_2 \boldsymbol{C}_2) \boldsymbol{Y} + \boldsymbol{Y} (\boldsymbol{A} - \boldsymbol{B}_1 \boldsymbol{D}_{21}^{\mathrm{T}} \boldsymbol{V}_2 \boldsymbol{C}_2)^{\mathrm{T}} + \boldsymbol{B}_1 (\boldsymbol{I} - \boldsymbol{D}_{21}^{\mathrm{T}} \boldsymbol{V}_2 \boldsymbol{D}_{21}) \boldsymbol{B}_1^{\mathrm{T}} - \boldsymbol{Y} (\boldsymbol{C}_2^{\mathrm{T}} \boldsymbol{V}_2 \boldsymbol{C}_2 - \boldsymbol{\gamma}^{-2} \boldsymbol{C}_1^{\mathrm{T}} \boldsymbol{C}_1) \boldsymbol{Y}$ (A. 6. 6)

Y(0) = R

在区间 $[0,t_f]$ 上的解存在。其中 $V_2 = (I + D_{21}D_{21}^T)^{-1}$ 。

3. $I - \gamma^{-2} X(t) Y(t) > 0, t \in [0, t_{\mathrm{f}}]$

根据上述条件按给定参数 γ 求解两个 Riccati 微分方程,即可 利用解 X(t),Y(t) 构造相应的 H_{∞} 跟踪系统控制器。 H_{∞} 跟踪问题 在 参考信号 r(t) 为 0 时便退化为标准 H_{∞} 控制问题,即第八章中 介绍的调节器问题,两者的 Riccati 方程没有本质的差别。

状态反馈跟踪问题是输出反馈跟踪问题的一个特例,因此这

里只介绍 H_{∞} 输出反馈跟踪问题解的存在性判定及临界参数 γ_{opt} 的计算:

1. 给定初始参数 γ_{\circ}

2. 利用精细积分方法结合扩展的 Wittrick-Williams 算法在 检验两个 Riccati 方程(A. 6. 5)(A. 6. 6)解的存在性的同时求解该 方程。只要有一个方程的解不存在,就可判定跟踪问题不可解。若 要计算可行的参数,则减小 γ ,再重复这一步。

3. 检验计算出的各个时刻 X(t),Y(t) 值是否符合谱半径条件,即 $X(0) < \gamma^2 R^{-1}$ 是否成立。如果满足这些条件,可以增大 γ 后回 到步骤 2 以寻求更接近临界值的参数。如果不满足条件,减小 γ 值,然后回到步骤 2,再依次进行上面的步骤。

上述步骤循环执行就可以找到满足给定精度要求的临界值 γ_{out} ,并同时得到两个 Riccati 微分方程在区间 $[0,t_i]$ 的解。

Riccati方程的求解只需给定如下数据,不需要方程(A. 6. $1 \sim$ A. 6. 3)中其余的数据。

$$\boldsymbol{A} = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \quad \boldsymbol{B}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \boldsymbol{B}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$\boldsymbol{C}_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \boldsymbol{C}_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$\boldsymbol{D}_{12} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \boldsymbol{D}_{21} = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad \boldsymbol{R} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

当区间为[0,4]时,临界参数为

 $\gamma_{\rm opt} = 77.00612338$

此时 Riccati 方程(A. 6. 5)(A. 6. 6)的部分解曲线如图 A. 11 及图 A. 12 所示。

如果区间长度取足够长,则 Riccati 微分方程的解趋近于对应 的代数方程的解,此时的临界参数为

 $\gamma_{\rm opt} = 77.27220988$

而两个 Riccati 微分方程稳态时的解为

$$\mathbf{X}(0) = \begin{bmatrix} 0.38984788 & -1.5014429 \\ -1.5014429 & 6.2456097 \end{bmatrix}$$
$$\mathbf{Y}(\infty) = \begin{bmatrix} 0.48745129 & -0.75402262 \\ -0.75402262 & 11.981256 \end{bmatrix}$$

可以验证该解满足对应的 Riccati 代数方程,也可以将临界参数代入 Riccati 代数方程用其它方法求解,结果是一致的,这里不再列出。

求解 H_{∞} 跟踪问题时需要判定解的存在性,这一点与 H_{∞} 标 准设计问题是相似的。对于有限时间问题,求解其中的Riccati微 分方程、计算临界参数是其关键性步骤,精细积分方法可以有效地 求解这一问题,这是精细积分方法求解 H_{∞} 优化问题的又一个例 子。

参考文献

- 1 解学书.最优控制理论与应用.北京:清华大学出版社,1986
- 2 钟万勰,欧阳华江,邓子辰. 计算结构力学与最优控制. 大连:大连理工 大学出版社,1993
- 3 钟万勰.卡尔曼-布西滤波的精细积分.大连理工大学学报,1999,39(2): 191~200
- 4 Shaked U, de Souza C E. Continuous Time Tracking Problems in an H_∞ Setting: A Game Theory Approach, IEEE Trans. Automat. Control, 1995,40(5): 841~852\=5 Green M, Limebeer D J N. Linear Robust Control. New Jersey:Prentice-Hall, 1995