AutoCAD2002 高级实例教程

入门与提高

海搏创作室 编著

内容简介

本教学光盘详细讲解了 AutoCAD2002 的基础知识和基本操作。基础知识包括作图 原则、坐标系统、图形界面、命令输入方式、点坐标输入方式、目标选择方式、显示操 作、图层、如何设置绘图环境、常用功能键以及基本三维绘图知识等;基本操作包括二 维绘图命令、二维图形编辑命令以及对象捕捉与追踪、图层、标注、图案填充、图块操 作、设计中心、对象特性管理器的使用、三维表面绘制、三维实体绘图、三维实体编辑 等。

光盘中的实例精选包含了建筑效果、居家用品、机械零件、综合创意等方面的实例, 使理论与实际操作相结合。它注重的是绘图命令的实际应用,所举实例来自教学和工程 实际,因而具有极强的实际意义和可操作性。

本教学光盘适合建筑与机械设计爱好者、大中院校的建筑与机械专业的学生、建筑 与机械设计类培训班学员。

书 名: AutoCAD2002 高级实例教程—入门与提高

文本著作者:海搏创作室

- C D 制作者: 辰光多媒体制作中心
- 责任 编辑辑: 董继菡
- 出版。发行者:浦东电子出版社
- **地 址**:上海浦东郭守敬路 498 号上海浦东软件园内 201203 电话:021-38954510,38953321,38953323(发行部)
- **经** 销:各地新华书店、软件连锁店
- **排 版**:四川中外科技文化交流中心排版制作中心
- C D 生产者: 东方光盘制造有限公司
- **文本印刷者**:成都地图出版社印刷厂
- 开本/规格: 787×1092 毫米 32 开本 3.25 印张 60 千字
- **版次/印次**: 2002 年 8 月第一版 2002 年 8 月第一次印刷
- 印数:0001—4000册
- 本版号: ISBN 7-
- 定价: 28.00 元

技术支持热线(028)85412516

说明:凡我社光盘配套图书有缺页、倒页、脱页、自然破损,本社发行部负责调

换。

前言

《 AutoCAD2002 高级实例教程—入门与提高》是作者总结 多年的多媒体教程制作经验,在对用户的需求进行了较详细的 调查分析后,在对同类产品进行了较广泛的调研的基础上制作 的一张多媒体教学光盘。

本光盘通过介绍工程制图的基本内容和 26 个综合实例, 深入浅出地讲述了如何使用 AutoCAD 2002 这个计算机辅助设 计工具进行各类工程设计。本光盘的教学讲解方式形象、生动, 有利于用户在较为轻松的环境中学习和提高。由于本光盘不仅 涉及基础知识,而且还有更多的中高级知识点和内容,所以, 它是适合初学者的教程,而且对于在 AutoCAD 上有一定的基 础,而需要通过实践进一步提高的中高级用户来说也是很好的 进阶教程。

我们致力于专业化的多媒体软件教程的制作,为广大用户 学习和使用各类应用软件而制作各种类型的软件教程。我们希 望:我们的软件教程能够成为知识传播的最佳媒介。

本多媒体教学光盘所具有的特点:

- 1. 符合认知规律,提高教学效果
- 2. 智能化的多媒体教学软件
- 3. 容量大,知识点全面
- 4. 独立可控的背景音乐和配音解说
- 5. 实例丰富,适合各类层次的用户

第1章	系统运行与简介	1				
1.1	系统基本要求					
1.2	软件运行	1				
1.3	光盘内容简介	1				
第2章	软件的使用					
21	首而	3				
2.1	日久 工程制图简介					
2.2	エーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー					
2.4	学习指南	6				
2.5	手匀指闱					
2.6	- 中高级应用 11					
2.7	字例精洗					
2.8	关闭精显					
2.9	复习与思考					
第3章	中高级应用的基本操作20					
3.1	三维表面绘制					
	3.1.1 三维面					
	3.1.2 三维曲面					
	3.1.3 绘制旋转曲面					
	3.1.4 平移曲面					
	3.1.5 直纹曲面					
	3.1.6 边界曲面					
3.2	三维实体绘图命令					
012	3.2.1 拉伸实体					
	3.2.2 旋转实体					
	3.2.3 布尔运算					
3.3	三维实体编辑					
	3.3.1 三维旋转					
	3.3.2 三维镜像					
	3.3.3 三维阵列					
	3.3.4 倒圆角					

目 录

AutoCAD2002 高级实例教程—入门与提高

	335 切开实休	34					
	3.3.5 切开只伴						
	3.3.0 近岸面						
	3.3.7 加47日						
	3.3.8						
	3.3.7 夏雨面						
笠ィ辛	5.5.10 咖际山						
お 4早	头彻有远一建巩XX米						
4.1	筑半面 1						
	4.1.1 实例效果	39					
	4.1.2 绘制过程	39					
4.2	建筑平面 2						
	4.2.1 实例效果						
	4.2.2 制作过程						
4.3	建筑平面 3						
	4.3.1 实例效果	47					
	4.3.2 制作过程	47					
4.4	房屋立面图						
	4.4.1 实例效果						
	4.4.2 制作过程						
4.5	停车场						
	4.5.1 实例效果	51					
	4.5.2 制作过程						
4.6	6 楼梯造型						
	4.6.1 实例效果						
	4.6.2 制作过程						
第5章	实例精选—居家用品	58					
5.1	花瓶						
	5.1.1 实例效果						
	5.1.2 制作过程						
5.2	烟灰缸	62					
	5.2.1 实例效果						
	5.2.2 制作过程						
5.3	录音机外观						
2.5	5.3.1 实例效果						

	5.3.2 制	作过程		65
第6章	实例精诚	选——机	械零件	70
6.1	滑轮			
	6.1.1 实	例效果		
	6.1.2 制	作过程		
6.2	轴测图			72
	6.2.1 实	例效果		72
	6.2.2 制	作过程		72
6.3	轴零件立	体图		76
	6.3.1 实	例效果		76
	6.3.2 制	作过程		76
6.4	零件图的	生成		
	6.4.1 实	例效果		
	6.4.2 制	作过程		79
6.5	六角螺母			85
	6.5.1 实	例效果		85
	6.5.2 制	作过程		
第7章	实例精	先—综	合创意	89
7.1	百合花花	瓣		89
	7.1.1 实	例效果		89
	7.1.2 制	作过程		89
7.2	飞舞的飘	带		
	7.2.1 实	例效果		
	7.2.2 制	作过程		
7.3	标志牌图	案		
	7.3.1 实	例效果		
	7.3.2 制	作过程		
7.4	叶片的效	果		
	7.4.1 实	例效果		
	7.4.2 制	作过程		

第1章 系统运行与简介

1.1 系统基本要求

CPU: MMX166 以上

内存: 32M,建议 64M 以上

屏幕:800×600,256 色以上的显示器

操作系统:Win9X、WinME、WinNT、WinXP

除以上要求外,还应配置光驱、声卡和电脑音箱

1.2 软件运行

一般情况下,将本光盘放置于光驱内,关上光驱门,几秒 钟后系统便会自动启动运行程序(启动时间和用户电脑的配置 有关,如果用户的电脑配置较低,可能启动的时间会相对较 长)。如果系统无法自动启动,则双击'我的电脑",再用鼠标 右键点击光驱所在的盘符,然后在下拉菜单中选择"自动播 放",几秒钟后就将启动成功。

1.3 光盘内容简介

本光盘学习内容包括基础应用、中高级应用和实例精选三 部分:

基础应用包含绘制二维视图的基本知识和基本操作命令、 另外还附有复习思考题供您巩固提高所需知识。基本知识包括 作图原则、坐标系统、图形界面、命令输入方式、点坐标输入

方式、目标选择方式、显示操作、图层、如何设置绘图环境、 常用功能键等内容的介绍说明;基本操作包括二维绘图命令、 二维图形编辑命令以及对象捕捉与追踪、图层、标注、图案填 充、图块操作、设计中心、对象特性管理器的使用。

中高级应用包括基本三维绘图知识(模型、面域、坐标系等)和基本操作命令,同样附有复习思考题。基本操作包含三维表面绘制(三维面、曲面、三维网格面)、三维实体绘图(拉伸、旋转、布尔运算)、三维实体编辑(阵列、镜像、倒角、倾斜面等)等内容。

实例精选包含:百合花花瓣、扳手、标志牌图案、电路图、 房屋立面图、飞舞的飘带、花瓶滑轮、棘轮、建筑平面 1、建 筑平面 2、建筑平面 3、交通标志、零件图的生成、六角螺母、 滑轮、楼梯造型、录音机外观、墨水瓶、伞的造型、停车场、 雪花、烟灰缸、叶片效果、轴、轴测图、轴零件立体图。

第2章 软件的使用

2.1 首页

光盘启动成功以后,首先进入软件的首页界面,如图 2.1 所示。这个界面中有 工程制图简介、AutoCAD2002 中文版简 介、学习指南、基础应用、中高级应用、实例精选"等六个按 钮是可以点击的。点击这些按钮,将进入相关的下一级主题界 面。

图 2.1

将鼠标放在整个画面的右下角的'CAD"球体上,则出现 "EXIT"的提示,点击鼠标则将退出本多媒体光盘的运行。

将鼠标放在文字'浦东电子出版社"上,鼠标变成一只手的形状,此时点击鼠标则进入"出版社简介"的页面。

2.2 工程制图简介

点击 工程制图简介 "按钮后,将进入本多媒体光盘的 工 程制图简介 "页面,如图 2.2 所示。该页面简单介绍了光盘的 主要内容。

图 2.2

在框架面板的右下方有 上一页"和 下一页"两个按钮,

因为该页面的文本内容不止一页,所以点击这两个按钮可以起 前后翻页的作用。

同时,在框架面板的中间有一排从小到大的球体图标,它 是"背景音乐控制"按钮,将鼠标放在上面后向左拖动,则球 体颜色逐渐变成蓝色,同时,背景音乐的声音将变小;反之, 则背景音乐的声音将变大。

用户看完后如果要返回首页,可以将鼠标放在整个画面下 方的箭头按钮上,点击鼠标则将返回首页,如图 2.3 所示。

图 2.3

2.3 AutoCAD2002 中文版简介

点击 AutoCAD2002 中文版简介"按钮后,将进入本光盘的 AutoCAD2002 中文版简介页面,如图 2.4 所示。

用户看完后如果要返回首页,可以将鼠标放在页面下方的 箭头按钮上,点击鼠标就将返回首页,如图 2.3 所示。

在框架面板的右下方有 上一页 " 和 下一页 " 两个按钮, 因为该页面的文本内容不止一页,所以点击它们可以起前后翻 页的作用。

图 2.4

同时,在框架面板的右下方还有一排从小到大的球体图标,它是"背景音乐控制"按钮,将鼠标放在上面后向左拖动,则球体颜色逐渐变成蓝色,同时背景音乐的声音将变小;反之,则背景音乐的声音将变大。

2.4 学习指南

点击'学习指南"按钮后,将进入本光盘的'学习指南" 界面,如图 2.5 所示。

在框架面板的右下方有 上一页"和 下一页"两个按钮, 因为该页面的文本内容不止一页,所以点击它们可以起前后翻 页的作用。

在框架面板的中间有一排从小到大的球体图标,它是"背

景音乐控制"按钮,将鼠标放在上面后向左拖动,则球体颜色 逐渐变成蓝色,同时,背景音乐的声音将变小;反之,则背景 音乐的声音将变大。

用户看完后如果要返回首页,可以将鼠标放在页面下方的 箭头按钮上,点击鼠标后,则将返回首页,如图 2.3 所示。

前、后页 ALC: UNK. 1214 翻页按钮 背景音乐 102 101 ------控制按钮

图 2.5

2.5 基础应用

点击'基础应用"按钮后,将进入基础应用的教学页面, 如图 2.6 所示。该页面中有'基础知识、基本操作和复习与思 考"三个版块内容的按钮是可以点击的。将鼠标放在这些按钮 上,其上的文字背底出现闪光,点击鼠标后,在左边框架中出 现相应的分级具体项目文字。

图 2.6

如:点击'基本操作"按钮后,将出现图 2.6 中的分级具体项目。这时如果将鼠标放在分级项目的文字上,则该文字变成黄色,例如在图 2.7 中选择的'二维图形编辑"项目,点击鼠标后,则进入"二维图形编辑"项目的下一级分类项目,如图 2.8 所示,选中的是该项目下的分类项目"移动"。

图 2.7

这时再点击'移动",因为该学习项目的具体内容是一段 AVI 视频,所以出现图 2.9 所示的'播放界面"进行播放。

第2章 软件的使用

图 2.8

图 2.9

在 播放界面"的下方有一排控制按钮,可以对学习过程、

解说音量、暂停等方面进行选择和控制,这里我们对这些按钮的使用不过多详细叙述,而在 播放页面"的介绍中具体说明。

在播放界面中点击'返回"按钮,则回到上一级界面(图 2.8)。同样,在上一级界面中点击'返回"按钮,也可以返回 到上一级界面(图 2.7)。

如果具体的学习内容只是文字,则出现以下情况:

点击'基础知识"版块按钮后,出现下面的类似界面,如 图 2.10 所示。

图 2.10

点击其中的'显示操作"按钮后,就直接出现其具体的文 字学习内容,如图 2.11 所示。

点击整个画面右上角的'复习与思考"版块按钮,则将进入"复习与思考"页面。它是通过习题测试来帮助用户巩固已 学知识的界面,其具体的情况我们将在'复习与思考"界面中 详细介绍。

第2章 软件的使用 国大教手段定中られ COMPLEX N 1. H. C. S. S. A. A. a branche an -----No. of the local division of the local divis 110000 0+04000 10010-000 No. "" " 返 回 " 按 钮 ARCOX-0 300 当时位于1、 当时的语

图 2.11

2.6 中高级应用

点击'中高级应用"按钮后,将进入中高级应用的教学页面,如图 2.12 所示。该页面中有'基础知识、基本操作和复习 与思考"三个版块内容的按钮是可以点击的。

将鼠标放在这些按钮上,其上的文字背底出现闪光,点击 鼠标,在左边框架中出现相应的分级具体项目。

这级界面的操作和 基础应用 "界面的情况几乎完全相同, 这里就不再多介绍了,用户根据上面的介绍,就可以完全掌握 它的操作方法。

在界面的右下角有一排从小到大的球体图标,它是"背景 音乐控制"按钮,将鼠标放在上面后向左拖动,则球体颜色逐 渐变成蓝色,同时,背景音乐的声音将变小;反之,则背景音 乐的声音将变大。

如果要返回首页,可以将鼠标放在页面右下角的箭头按钮 上,点击鼠标后,则将返回首页。

图 2.12

2.7 实例精选

点击'实例精选"按钮后,将进入实例精选的教学页面, 如图 2.13 所示。该页面中有'建筑效果、居家用品、机械零件 和综合创意"四个版块内容的按钮可以点击。

点击左边的任何一个按钮,则在右边的区域出现和该按钮 相对应的具体分类项目。将鼠标放在某一个项目上,项目文字 将变成黄色,同时在画面的右下角出现这个项目实例完成后的 最终效果图。点击鼠标后,则出现'播放界面"进行教学演示 播放。

图 2.13

在画面的右下角有一排从小到大的球体图标,它是"背景 音乐控制"按钮,将鼠标放在上面后向左拖动,则球体颜色逐 渐变成蓝色,同时,背景音乐的声音将变小;反之,则背景音 乐的声音将变大。

如果要返回首页,可以将鼠标放在页面右下角的箭头按钮 上,点击鼠标后,则将返回首页。

2.8 播放页面

进入播放界面后,在该界面的下方有一排控制按钮。而在

控制按钮的上方是具体的教学内容播放窗口,它是一个 800× 640 的播放窗口。在这里,将播放和上一级对应的按钮相关的 学习内容。用户可以通过点击控制按钮来达到控制具体学习过 程、解说音量、暂停的目的。

将鼠标放在这些按钮上,会出现相应的文字提示,现在我 们将这些控制按钮的具体用途标注在图 2.14 上,并对其功能进 行详细的讲述。_______

图 2.14

下面就来具体讲解控制按钮的使用。

1. 音量控制

音量控制的构成请见图 2.15。拖动上面的滑块可以改变讲 解声音的大小,将滑块拖动到最左边时,则整个讲解声音会消

失,相当于达到静音的作用。

图 2.15

2.返回

点击 返回"按钮后,则将返回相应的上一 级界面,如图 2.16 所示。

3. 播放/暂停

图 2.16

点击'播放/暂停"按钮,软件的播放过程将在播放和暂停 之间进行切换。同时,该图标将发生改变,如图 2.17 所示。

图 2.17

4. 前进/后退

这是两个一组的按钮。点击'前进"按钮,则整个讲解过 程向下一步跳转;同样,如果点击'后退"按钮,则整个讲解 过程向上一步跳转。它很类似于一般播放器中的'快进"键和 "快退"键,如图 2.18 所示。

图 2.18

5. 播放进程

播放进程是一个学习进度的显示条,其上有一个橙色进度条,随着它的增长来对应已经播放了多少内容,如图 2.19 所示。

图 2.19

2.9 复习与思考

在"基础应用"和"中高级应用"页面中,都有一个"复 习与思考"按钮。前面已经讲过,它是通过习题测试来帮助用 户巩固已学知识的界面。如:下面就是"基础应用"页面中的 复习与思考题,如图 2.20 所示。

下面来介绍做测试题的具体情况。

用户可以在测试题目右方所给的答案中用鼠标选择一个, 如果用户选择的答案是错误的,则在页面中会出现'错"的提 示动画。

该动画播放完成后,习题又会恢复到初始状态,等待用户 重新选择。

具体的情况如图 2.21 所示。

图 2.20

图 2.21

如果用户的选择是正确的,则将出现'对"的提示动画, 如图 2.22 所示。

图 2.22

选择正确后,则做过的该测试题的字体颜色将变成灰色, 并且不能够再做,除非退出本级界面再次进入后才可以重新 做。

如果是在'中高级应用"的复习与思考中,它的选择有一些是多重选择,如图 2.23 所示。

图 2.23

先在要选的答案上点击鼠标,则该答案左边出现一个红 勾。确定后再点击左边框中的'Yes"按钮,否则就点击'No" 清除后重新选择。

出错和正确提示动画和'基础应用"完全相同,这里就不 多介绍。

第3章 中高级应用的基本操作

本章进行具体的三维实体绘制操作。

3.1 三维表面绘制

三维表面,如三维面、曲面、三维网格面等,都可以利用 3D 命令绘制出来。

3.1.1 三维面

使用 3DFACE 命令可以直接绘制一些复杂的三维面。该命 令用于绘制由三个或四个点所确定的空间平面。屏幕上只显示 该平面的外框轮廓,但它其实是一个实体面,具有不透明柱, 可遮挡其他图形。

3.1.2 三维曲面

AutoCAD2002 为用户提供了一些规则的三维表面形体命 令,如立方体、球、圆盘、窟窿、圆球、楔形体、锥体以及网 格面,从而可以方便地创建工程图中常见的零件模型。

3.1.3 绘制旋转曲面

我们在这里用旋转的方法来生成一个三维网格曲面,然后 再对其着色,效果如图 3.1 所示。

制作过程如下:

1. 启动 AutoCAD2002 程序,并设置好绘图环境。

2. 绘制旋转轴

单击直线工具按钮,在窗口中绘制一垂直旋转轴。

第3章 中高级应用的基本操作

图 3.1

3. 绘制旋转曲线

单击样条曲线工具按钮,在旋转轴旁绘制一旋转曲线。如 图 3.2 所示。

4. 旋转形成三维网格曲面。

命令:surftab1

//输入 surftab1 命令

输入 SURFTAB1 的新值<6>:60 //输入 M 方向分段数为 60 命令:surftab2 //输入 surftab2 命令

输入 SURFTAB2 的新值<6>:60 //输入 N 方向分段数为 60

5.选择'绘图/表面/旋转曲面"菜单命令,然后按照下面 的提示语句操作:

选择要旋转的对象:

指定起点角度<0>:

//点选曲线为旋转对象

选择定义旋转轴的对象: //点选垂直轴为旋转轴

//回车默认起点角度为0

指定包含角 +=逆时针,-=顺时针)<360>://回车默认包含角为360 然后生成如图 3.3 所示的曲面。

6. 在"随层"下拉列表中选择着色颜色为"红色"。

7.单击"三维动态观察器",图形周围出现如图 3.4 所示 的视角调节圆圈,

AutoCAD2002 高级实例教程—入门与提高

图 3.2

图 3.3

然后在曲面上单击鼠标右键,从快捷菜单中选择"着色模 式/平面着色"命令。

在三维观察器中调整观察角度,来观察生成的实体效果。

观察着色后的曲面。

8.单击鼠标右键,从快捷菜单中选择"退出"按钮,退 出三维动态观察器。

图 3.4

3.1.4 平移曲面

平移曲面是由用户指定的一条轨迹曲线和一个方向矢量 来定义的一个多边形网格表面。下面以实例来说明其绘制方

法,绘制出的两个平移曲面效果如图 3.5 所示。

图 3.5

制作过程如下:

1. 绘制轨迹曲线。

(1)点选工具栏中的样条曲线按钮,选择样条曲线,然 后在图层1的俯视图中绘制一轨迹曲线。

(2) 点选画圆工具再绘制一个圆,作为另一曲面的轨迹 曲线。

2.将视图转换为东南等轴测视图,并单击平移按钮,将
轨迹移到适当位置,并用缩放工具将图形缩小到适当大小。如
图 3.6 左图所示。

3. 在图层下拉列表中选择'图层 2", 将图层 2作为当前 图层,将视图切换为主视图。

4. 点选直线工具,在图层中绘制一垂直线作为矢量方向, 如图 3.6 右图所示。

5. 再将图层1设置为当前图层。

6. 在命令提示行输入" surftab1 " 命令来更改网格密度;

在下一行中输入 surftab1 的新值为" 50"。

7.单击'曲面"工具条中的平移曲面按钮<mark></mark>。;点选曲线 为轨迹曲线;再点选垂直线为矢量方向,就生成一个平移曲面。

8.重复平移曲面命令;点选圆为轨迹曲线;点选垂直线 为矢量方向,又生成一个平移曲面,参见效果图 3.5。

图 3.6

3.1.5 直纹曲面

直纹曲线是由两个曲线来定义的三维表面,能够构成边界 曲线的物体有:直线、点、弧、圆、二维或者三维多义线。下 面以实例来讲解制作方法,制作出的两个直纹曲面效果如图 3.7 所示。

1. 绘制一边界曲线。

(1)点选样条曲线按钮,在图层1 中绘制一边界曲线, 作为一个曲面的第一个边界曲线。

(2)用画圆工具绘制一个圆,作为另一个曲面的第一条 边界曲线。

2. 切换到东南视图, 平移图形到适当位置, 并调整其大小。

3.选择"工具/移动 UCS"菜单命令,然后在窗口中单击 鼠标右键,从快捷菜单中选择"Zdepth"命令,即Z向深度命

令;在下面的提示行中输入 Zdepth 为" 200",回车确认。

4. 绘制第二条边界曲线。

(1)点选直线工具,在窗口中绘制一条直线作为一个曲面的第二个边界线。

(2)选择⁴ 绘图/点/单点"命令,然后在窗口中适当位置 绘制一点作为另一曲面的第二个边界线。此时图形如图 3.8 所 示。

5. 将图层2设置为当前图层。

6. 在命令提示行输入" surftab1 "; 然后在下面的提示行中 输入" 20", 即将网格密度更改为 20。

7. 点选'曲面"工具栏中的'直纹曲面"按钮,再依次 选择曲面的两条边界曲线,就生成一个直纹曲面。

8. 重复直纹曲面命令,生成另一个直纹曲面。

图 3.7

图 3.8

3.1.6 边界曲面

边界曲面是由首尾相按(终点应当两两重合)的一个四边 拓扑闭合回路作为边界线所构成的一个三维网格面。图 3.9 就 是一个边界曲面图形,其绘制方法如下:

1.为了给边界曲面的 4 个边界线定位,我们先在 0 图层

中绘制一长方体。

2. 切换到西南视图,并把图层1设置为当前图层。

3. 绘制4条边界线。

(1)点选样条曲线中的曲线工具;在长方体的一个垂直 边上确定曲线第一点;在相邻下底边上确定曲线第二点;在相 邻另一垂直边上确定曲线第三点,回车完成第一条边界线的绘 制。

(2)选择重复样条曲线命令;确定第一条边界线的终点 为第二条边界线的起点;在相邻上底边上确定第二点;在相邻 另一垂直边上确定第三点,回车完成第二条边界线的绘制。

(3)按前两步的方法绘制出另两条边界线,注意前一条 边界线的终点为后一条边界线的起点。绘制完的边界线如图 3.10 所示。

图 3.9

图 3.10

4.单击曲面工具栏中的边界曲面按钮 2,再根据提示依 次点击4条边界线,最后就形成一个边界曲面。

5.在图层下拉列表中单击'0"图层前亮着的灯泡,关闭 该图层,就看到图 3.9 所示效果。

3.2 三维实体绘图命令

3.2.1 拉伸实体

拉伸命令可以使指定的对象在指定的方向上拉长或缩短。

我们现在要将图 3.11 左图所示的平面图形拉伸为一个右图 所示的三维实体,然后对拉伸后的实体进行着色处理。

其操作过程如下:

1. 单击"拉伸"按钮3.

2. 拉伸图形。

图 3.11

命令行中出现如下所示语句:

选择对象:找到1个 //用鼠标点选图形 选择对象: //回车完成拉伸对象的选择 指定拉伸高度或[路径(P)]:20 //输入拉伸高度为20 指定拉伸的倾斜角度<0>: //回车默认倾斜角度为0 拉伸后的三维实体如图 3.11 右图所示。

3.选择"随层"颜色为"红色"。

4.同样选择三维动态观察器,然后在实体上单击鼠标右
键,出现着色模式快捷菜单,从下级菜单中选择"体着色"命
令。

拉伸的实体被着上红色。调整观察的视角,此时的实体如 图 3.12 所示。

5.单击鼠标右键,从快捷菜单中选择"退出"按钮,退 出三维动态观察器。

图 3.12

3.2.2 旋转实体

旋转命令可使选中的对象绕指定点旋转。

我们将图 3.13 左图所示图形的上表面绕 Y 轴旋转 20 度, 其最后效果如图 3.13 右图所示。

图 3.13

操作过程如下:

1.点击旋转面按钮20。

2. 旋转面。

在命令提示行出现如下语句:

选择面或[放弃(U)/删除(R)]:找到一个面。 //点选实体的上表面为旋转对象 选择面或[放弃(U)/删除(R)/全部(ALL)]:

//回车完成对象选择

指定轴点或[经过对象的轴(A)/视图(V)/X轴(X)/Y轴(Y)/Z轴(Z):Y

//输入Y轴为坐标轴

指定旋转原点<0,0,0>: //回车默认旋转原点(0,0,0) 指定旋转角度或[参照(R)]:20 //输入旋转角度为20

3.单击鼠标右键,从快捷菜单中选择"确认"按钮,上 表面倾斜为图 3.13 右图所示效果。

3.2.3 布尔运算

布尔运算有:合集布尔运算、差集布尔运算以及交集布尔运算。下面分别对三种运算进行实例讲解。图 3.14 中所示为一个球体和一个圆锥实体,分别对这两个实体进行三种运算,看结果如何。

1. 合集布尔运算

该运算用于将两个或两个以上的面域或实体合并成一个 整体。其方法是:

在命令提示行输入"union"命令,根据提示来选择要合并的两个对象物体(球体和圆锥体),然后回车。

合集布尔运算后的结果如图 3.15 所示。

2. 差集布尔运算

该运算用于从一个实体中移去与其相交的一个或多个其 他实体。其方法是:

在命令提示行输入"subtract"命令,然后根据提示来选择 被减物体(球体);回车后再选择减除对象(圆锥体),再回车

后就完成计算。完成差集布尔运算后的结果如图 3.16 所示。

图 3.14

图 3.15

3. 交集布尔运算

该运算用于求出多个实体之间的公共部分的图形,并自动 剪去其余部分。其方法是:

在命令提示行输入" intersect " 命令, 然后根据提示来选择 要进行交集运算的多个对象(球体和圆锥体) 再回车后就完成 计算。完成交集布尔运算后的结果如图 3.17 所示。

图 3.16

图 3.17

3.3 三维实体编辑

3.3.1 三维旋转

三维旋转可以将一个物体按一定的角度和方向绕一个基

点或轴进行旋转,而不改变物体的形状。

下面我们将 3.18 左图所示两个实体中的一个绕 Z 轴旋转一 个角度,结果形成图 3.18 右图所示图形。

方法如下:

1.选择"修改/三维操作/三维旋转"菜单命令。

2. 命令提示行提示'选择对象"。在窗口中点选要旋转的 实体,参见图 3.18。

3. 接下来提示'指定轴上的第一个点或定义轴依据", 输入"Z"。选择Z轴为旋转轴。

4.提示"指定 Z 轴上的点<0,0,0>",回车默认轴上的 点坐标。

5.接下来提示 指定旋转的角度",输入旋转角度为 90", 然后回车。实体按设置的轴和角度进行旋转。

图 3.18

3.3.2 三维镜像

对一个物体进行镜像操作可以建立该物体的镜像图形和 建立一个镜像物体。

下面将图 3.19 左图所示的实体沿 YZ 平面镜像,生成右图 所示图形。

图 3.19

镜像方法如下:

1.选择"修改/三维操作/三维镜像"菜单命令。

2.提示"选择对象"。在窗口中点选图 3.19 左图所示的实体。

3. 下面提示选择镜像平面。在窗口中单击鼠标右键,从 快捷菜单中选择 YZ 平面",或直接在命令提示行中输入 YZ"。

4.提示 指定 YZ 平面上的点<0,0,0>"。回车默认平面上的点。

5.提示"是否删除源对象?"。回车默认不删除源对象。

最后得到图 3.19 所示的镜像图形。

3.3.3 三维阵列

三维阵列将一个已经存在的物体进行进行重复拷贝,从而 建立一个矩形或环形阵列,阵列中的每个物体均可单独存在。

下面对图 3.20 左图所示图形进行矩形阵列,阵列效果如图 3.20 右图所示。

方法如下:

1.选择"修改/三维操作/三维阵列"菜单命令。

2. 提示"选择对象"。 点选图 3.20 左图所示图形为阵列对

象。

图 3.20

3. 提示'输入阵列类型 "。在窗口中单击鼠标右键,从快 捷菜单中选择'矩形",也可以直接在命令提示行输入"R"。

4. 提示"输入行数"。输入阵列行数为"2"。

5. 提示"输入列数"。输入阵列列数为"3"。

6. 提示"输入层次数"。输入空间阵列层次数为"4"

7.提示"指定行间距"。输入行间距为"200"。

8.提示"指定列间距"。输入列间距也为"200"。

9. 提示"指定层间距"。输入层间距也为"200"。

10. 回车后,得到阵列效果。

11.适当缩放阵列图形后,单击鼠标右键,从快捷菜单中 选择"退出"命令。

12.选择三维动态观察器,可以从各个角度观察阵列效果。

3.3.4 倒圆角

倒圆角可以将两个物体用一段平滑的圆弧线拟合连接在 一起。下面将图 3.21 左图所示的图形进行倒圆角,最后的效果 如右图所示。

方法如下:

1. 对图形的三条平行短棱倒圆角

(1)点选工具栏中的倒圆角按钮 ~。

(2)根据提示点选一条平行棱作为倒圆角的第一个对象; 在下一行回车默认圆角半径为"10";再依次点选其它两条平 行棱;回车就完成对这三边的倒圆角操作。

图 3.21

2. 对图形左侧面各边倒圆角

重复倒圆角命令;选择左侧面上的棱1作为第一个对象; 回车默认圆角半径为10;在下面的提示行中输入"C",即将选 择一个对象链(Chain);再点选左侧面上棱2,则与棱2相连 的其他几条棱都被选中;然后回车完成命令。最后得到图3.21 右图所示图形。

3.3.5 切开实体

下面举例来讲解如何将一个实体分成两部分。这里我们要 将图 3.22 左图中的零件剖开为两半,如右图所示。

方法如下:

1.单击剖切按钮 🖲。

2.根据提示点选整个实体作为剖切对象;在下一行回车

结束对象选择;单击鼠标右键,从快捷菜单中选择 XY "命令,即选择 XY 平面作为剖切平面;捕捉实体上的一个圆心为 XY 平面上的一点;单击鼠标右键,从下拉菜单中选择" keep both sides "命令,表示将实体切为两部分。这样原实体就被过圆心的 XY 平面剖切为两部分。

3. 在命令提示行输入"move"命令,然后选择剖切开的 一半实体,将其移开,得到图 3.22 右图所示效果。

图 3.22

3.3.6 拉伸面

用拉伸的方法可以由二维图形直接得到三维图形。下面我 们将图 3.23 左图中的两个五边形以两种方法进行拉伸,最后的 效果见右图所示。

方法如下:

1. 直接指定拉伸高度来拉伸左边五边形。

(1)点选拉伸面按钮 1,

(2)按照提示,在窗口中选择左边五边形为拉伸对象; 回车结束对象选择;在下一行中输入拉伸高度为"20";在下 一行中回车默认拉伸角度为0。左边五边形就被拉伸为图 3.23 右图中所示形状。

图 3.23

2.以指定拉伸路径的方法来拉伸右边五边形。

(1)单击鼠标右键,在快捷下拉菜单中选择"重复 EXTRUDE"命令。

(2)在窗口中选择右边五边形为拉伸对象;在下一行中 回车结束对象选择;单击鼠标右键,从弹出的快捷菜单中选择 "path"命令,即以指定路径的方法来拉伸图形;点选图 3.23 中的条样线为拉伸路径,这样就拉伸出图 3.23 右图中所示的形 状。

3.3.7 旋转面

旋转面即将一个面按一定的角度和方向绕一个基点进行 旋转,旋转后不改变面的形状。

下面将图 3.24 左图中所示图形的上表面绕 Y 轴旋转 30 度, 效果如右图所示。

方法如下:

1.单击旋转面按钮 💋。

2.根据提示选择图形上表面为旋转对象;在下一行回车 结束对象选择;提示选择旋转轴。在窗口中单击鼠标右键,从 快捷菜单中选择'Yaxis",即选择Y轴为旋转轴;下面提示选 择旋转基点。捕捉上表面圆心为旋转基点;在下面的提示行中

输入旋转角度为" 30"。这样上表面就被旋转成图 3.24 右图所 示形状。

3. 按键盘上的 ESC 键,退出本次命令。

图 3.24

3.3.8 倾斜面

下面将图 3.25 左图所示图形的内环面倾斜为右图所示的 锥形面。其方法如下:

1.单击倾斜面按钮🕉。

2.根据提示,选择图形的内环面为倾斜对象;在下一行 中回车结束对象选择;打开点捕捉。点击内环面下底面圆心为 基点;再点击上底面圆心为倾斜轴上另一点;输入倾斜角度为 "10"。这样就将内环面倾斜为右图形状。

图 3.25

3. 按 ESC 键退出本次命令。

3.3.9 复制面

下面我们用复制面命令对图 3.26 左图图形中的上表面进 行复制。方法如下:

图 3.26

1.单击复制面按钮题。

2.根据提示,选择上表面为复制对象;在下一行回车结束对象选择;然后捕捉上表面圆心为复制基点;拖动鼠标到另一点。上表面就被复制。

3.要查看图形的详细情况,可以在命令提示行输入"list" 命令来查看。

3.3.10 删除面

下面来删除图 3.27 左图圆台的内孔,删除后成为实心物体,效果见右图。

方法如下:

1.单击删除面按钮 22。

2.根据提示,选择图形的 内表面;回车确认后,就将内表 面删除,见图 3.27 右图所示。

第4章 实例精选—建筑效果

本章将讲解几种建筑效果图的绘制,如建筑平面停车场、 楼梯等。

4.1 建筑平面1

4.1.1 实例效果

绘制出的建筑平面1如图4.1所示。

图 4.1

4.1.2 绘制过程

我们用样板图形来绘制一个建筑平面 1。使用样板图可以 使用它已定义好的绘图环境,还可以使用其所包含的图形物体 等数据。

绘制过程如下:

1. 启动 AutoCAD2002 程序。

2. 在'启动"对话框中单击'使用样板"按钮□。

3.在'选择样板 "列表框中选择'Arch.dwf "样板。单击 "确定"按钮。

4. 下面绘制 axis(轴)图层。

(1) 在图层下拉列表中选择"axis"图层,确定后进行该 图层的绘制。

(2)下面来绘制几条垂直轴线。

点选直线工具,打开正交模式,依次确定垂直线的两 点,单击鼠标右键,从快捷菜单中选择'确认"命令,就画出 一条垂直线。

在命令提示行输入"ltScale"来重新定义线型粗细;在 下面输入线型比例因子为"100";回车后完成线型重设置。

点击偏移按钮。 ;输入偏移距离为"3300",回车; 选择偏移对象为上面所绘垂直线,回车;用鼠标在垂直线右侧 点击一下,以确定偏移方向;回车后,即在原垂直线右侧出现 新垂直线。

在窗口中单击鼠标右键,从快捷菜单中选择"重复偏移"命令,在右侧偏移复制一条新垂直线,距离为3800;再重复偏移命令,偏移距离为1600。此时的4条垂直轴线如图4.2 所示。

(3) 绘制几条水平轴线。

同样用直线工具绘制一条水平轴线。

再执行偏移命令,绘制其它 5 条水平轴线,其偏移距 离分别为 3600、4200、1490、1500、1600。此时的图形如图 4.3 所示。

5. 绘制 wal(墙) 图层。 • **40**

(1)在图层下拉列表中选择"wall"图层。

(2) 点选"多线"按钮,打开对象捕捉。

(3)在命令提示行输入"j(对正);然后输入"Z",即 选择对正类型为Z;输入"S(比例);输入多线比例为 180"。

图 4.2

图 4.3

(4)在窗口中沿轴线绘制如图 4.4 左图所示形状。

(5)继续前面的多义线绘制过程:在命令提示行输入
 "@1300,0",即向右绘制直线。最后点击鼠标右键,从快捷
 菜单中选择'确认",完成本次多线绘制。如图 4.4 右图所示。

图 4.4

(6) 多次重复多线绘制。最后形成图 4.5 所示图形。

(7) 在图层下拉列表中再次单击"axis"图层,关闭该图 层。

(8)在工具条中单击鼠标右键,从快捷菜单中选择"修改II"命令,显示该工具条。

(9) 在"修改Ⅱ"工具条中单击"编辑多线"按钮 Ø, 出现'多线编辑工具"对话框,在该对话框中选择"T形合并" 工具后,单击"确定"按钮,关闭对话框。

(10)下面对前面所绘多线进行编辑。

单击多线中 T 形的下边,再选择 T 形的横边,就将该 T 形 多余的线(与其它多线相交的线)删除。

多次进行上面的操作,最后将所有的多余线都删除。

单击鼠标右键,从快捷菜单中选择'确认"命令,确认上 面的编辑操作。

6. 重新打开" axis " 图层。

7.选择多线工具;在命令提示行输入"S",即重新设置 比例;输入新比例为"120"。然后在窗口中沿着轴线绘制完本 例的所有多线,如图4.6所示。

图 4.6

8.选择'分解"命令按钮,将图4.6中刚画的多线执行分 解操作。

9. 关闭" axis " 图层。

10. 下面在分解的多线上进行倒角。

(1)点选倒角工具;然后在下面的命令提示行输入"d"
(以距离方式来决定倒角大小);在下面的提示行中输入第一
个倒角距离为 500",回车;再回车默认第二倒角距离 500"。
这样就设置好倒角的大小。

(2) 重复倒角命令。

选择前面分解的多线的内直角一边为倒角的第一边;再选 择内直角的另一边为倒角第二边,完成内直角倒角。

(3)再重复倒角命令。将前面分解的多线的外直角也倒角。

11.打开" axis"图层,单击鼠标右键,从快捷菜单中选择"确认"命令。

至此完成了建筑平面1的全部绘制过程。

4.2 建筑平面 2

4.2.1 实例效果

我们将在建筑平面 1 的基础上,绘制门等建筑结构。最后的效果如图 4.7 所示。

4.2.2 制作过程

1.打开前面绘制的建筑平面1。

2.用镜像命令,分别将水平轴和垂直轴多次镜像,两轴 之间的最短距离为 240。最后形成的轴线如图 4.8 所示。

AutoCAD2002 高级实例教程—入门与提高

图 4.7

图 4.8

3.选择"特性匹配"按钮
3.选择"特性匹配"按钮
7,然后选择外墙线,再选择
要改变层的4根轴线,选择完后的墙线呈虚线显示,4根轴线
呈实线显示,如图4.9所示。

单击鼠标右键,从快捷菜单中选择"确认"命令。

4. 关闭" axis " 图层,并确定。

5. 重复使用偏移命令,将4根轴线分别向右、向上、向 下偏移,偏移距离为900。偏移后的图形如图4.10所示。

图 4.10

6.在窗口中单击鼠标右键,从快捷菜单中选择"快速选择"命令,弹出'快速选择"对话框,在该对话框中设置"应 用到"下拉选项为'整个图形";对象类型"下拉选项为'多 线";在"特性"列表框中选择"颜色";"运算符"下拉选项 为"=等于";"值"下拉选项为'随层";在"如何应用"栏下 选择"包括在新选择集中"。单击"确定"按钮。

7.用分解命令分解多线,这里所分解的多线是除含有倒 角的两条多线之外的所有墙线。

8. 修剪墙线形成门洞。

(1) 点选"修剪"工具,然后在窗口中选择所有基准线, 即图 4.10 中的偏移完后的 8 条直线作为修剪的边界物体。

(2) 然后点击要剪切的墙线形成门洞,确认后,形成的 图形如图 4.11 所示。

9. 重复修剪命令。

这里,我们是要剪切掉前面的8条线:

选择与一条线相交的两条墙线,然后单击鼠标右键,从快 捷菜单中选择"延伸"命令,将墙线延伸到这条线上,然后将 这条线剪切,最后单击鼠标右键,从下拉菜单中选择"确认" 命令。

重复上面的操作,直至将所有墙线延伸,并将剩余7条线 都剪切掉。

剪切完后的图形如图 4.12 所示。

10. 打开" axis " 图层,并确认。

11.点选直线工具,在窗口中分别绘制水平线段和垂直线段:水平线右端点坐标为 @1000,0 ";垂直线的下端点坐标为 "@0,-1000 ",这两条线段长度都为 1000, 于 1000,0 " 点处 相交。两条线段绘制完成后,进行确认。

AutoCAD2002 高级实例教程—入门与提高

图 4.11

图 4.12

12.点选圆弧工具;然后在命令提示行输入"ce",即以指 定圆心的方法来绘制圆弧;根据提示选择水平线段的左端点为 圆弧的起点;选择垂直线段的下端点为圆弧的终点。最后选择 "确认"命令。绘制出一个 1/4 圆大小的扇形,参见图 4.7 中 标为"门"的图形。

13. 点击工具条中的'创建块"按钮,弹出"块定义"对 话框。在该对话框中进行以下设置:

在'名称"文本框中输入块名为'door";单击'基点"栏下的'拾取点"按钮,返回窗口,点击扇形的圆心为基点;重新出现对话框,点击'对象"栏下的'选择对象"按钮,然后在窗口中选择扇形;对话框中其他项都保持默认设置,最后单击'确定"按钮,完成块定义。

14. 在图层下拉列表中选择"door"图层, 打开该图层。

15.点选工具条中的'插入块"按钮,弹出"插入点"对 话框:在'名称"下拉选项中选择'door";保持'插入点"项 下的'在屏幕上指定"复选框处于选中状态;在'缩放比例" 项下勾选'统一比例"前的复选框,并在'X"文本框中输入 比例为'0.9";设置'旋转"项下的'角度"为'0"。然后在

窗口中点击选择一个门洞为插入点,就将一个圆弧门插入到该 点上。

16.重复插入块操作,将门图块以不同旋转角度(在"插入点"对话框中的"角度"文本框中输入相应角度即可)插入 到图形的门洞中。最后形成图 4.7 所示图形。

4.3 建筑平面 3

4.3.1 实例效果

在本节中,我们制作出建筑平面图上的文字。效果如图 4.13 所示。

图 4.13

4.3.2 制作过程

1. 打开前面制作的建筑平面 2 图形。

2. 在图层下拉列表中选择" text " 图层, 在该图层中进行 文字输入。

3. 在命令提示行输入" text " 命令; 然后根据提示在窗口

中选择文字插入点;输入文字高度为"550";回车默认文字旋转角度为"0";在命令提示行输入"卧室",回车;继续输入 "主卧室",再回车;继续在下面的各个命令提示行依次输入 "主卧室","客厅"、"阳台"、"厨房"、"浴室";最后在一个 空命令提示行中回车结束文字输入。

4. 用拉伸命令将文字分别放置到图形中相应的位置。

(1) 点选工具条中的"拉伸"按钮,关闭正交模式。

(2)选择"卧室"文字为拉伸对象;然后根据提示在窗口中指定基点;指定目的点,最后将"卧室"文字移动到图形的卧室正中,参见图 4.13 所示。

(3)重复拉伸命令多次,将所有文字都移到图中相应位置。

5. 在命令提示行输入"mirrtext"命令;输入mirrtext新值 为"0"。

6.在命令提示行输入"mirror"命令;根据提示在窗口中 选择整个图形(包括文字)和垂直轴线为镜像对象;然后打开 正交模式,点击图形最右上点为镜像轴的一个端点;再选择图 形最右下点为镜像轴的另一个端点;回车默认不删除源对象。 原图形就沿所指定的垂直镜像线镜像,形成本节的最后效果图 4.13。

4.4 房屋立面图

4.4.1 实例效果

本节绘制一房屋的外观平面图,包括墙、窗和顶,效果如 图 4.14 所示。

图 4.14

4.4.2 制作过程

1.新建一个文件。

2. 点选矩形工具,在窗口中绘制一个较大矩形。

3.重复使用矩形命令,在前面的矩形中绘制一个较小矩形,作为房屋中的窗框。然后在窗框矩形中再绘制一个小矩形 作为一扇窗,继续绘制一个更小矩形作为窗格(先关闭对象捕捉)。此时图形如图 4.15 所示。

3. 点选工具条中的'复制对象"按钮,选择窗格为复制 对象,将其垂直向下复制一份。重复复制命令,再垂直向下复 制一个窗格,如图 4.16 所示。

4. 点选镜像按钮;选择窗扇及里面的 3 个窗格为镜像对 象;在对象右侧用鼠标捕捉一适当距离的垂直线作为镜像线; 回车默认不删除源对象。镜像完的图形如图 4.17 所示。

5.再次使用镜像命令,将窗框及里面所有矩形作为镜像 对象,捕捉最大矩形的垂直中心轴作为镜像线,在墙体上镜像

复制出一个窗子。

图 4.15

图 4.16

6.点选直线工具,以大矩形上边的中点为第一点,向上 绘制一垂直线段,回车确认。

7.再用直线命令,以大矩形的左上点为起点,向左绘制 一段水平线;然后关闭正交模式,向上绘制一斜线;单击鼠标 右键,从弹出的下拉快捷菜单中选择'垂足"命令;然后再向 右绘制水平线直到捕捉步骤 6 中所绘垂直线上的一点作为终 点。对上述操作进行确认。此时的图形如图 4.18 所示。

图 4.17

图 4.18

8. 点选镜像按钮;选择步骤 7 中所绘的各个线段作为镜 像对象;选择步骤 6 中所绘垂线作为镜像线;回车默认不删除 源对象。完成镜像命令后,就形成整个房屋顶部。

9. 点选工具条中的'删除"按钮, 然后选中步骤 6 中所 绘垂直线段作为删除对象, 回车后将该线段删除。

10.点选工具条中的'图案填充"按钮,打开'边界图案 填充"对话框。在'高级"选项卡中选中'孤岛检测方式"栏 下的'外部"选项;返回到该对话框的'快速"选项卡,选择 "图案"下拉选项为'AR-B816",然后单击'拾取内部点"按 钮,返回到窗口中框选墙体及其内部图形作为填充对象,回车 确认,此时重新弹出对话框,单击'确定"按钮,完成填充操 作。此时墙体就被填充上所选图案。

11.重复 图案填充"命令,为屋项填充 AR-B88"图案。 至此,我们完成了整个房屋立面图的绘制。

4.5 停车场

4.5.1 实例效果

本节我们绘制建筑结构中的停车场,效果如图 4.19 所示。

4.5.2 制作过程

1. 启动 AutoCAD2002 程序。

2. 在命令提示行输入"limits"命令,重新设置绘图边界; 回车默认左下角点为"0,0";指定右下角点为"300,300"。

3. 输入" ZOOM " 命令; 再输入" a", 这样设置后, 将全 屏显示。

4. 点选矩形工具,在窗口中绘制一矩形,其左上角点坐标为(82,175),右下角点坐标为(234,127)。

5. 重复矩形命令,绘制另一小矩形,其左上角点坐标为 (82,189),右下角点坐标为(100,184)。这个矩形代表小 车的车体。

6. 点击窗口缩放图标,放大图形。

7. 点选绘制工具,在窗口中绘制一圆:圆心坐标为(85.2, 182.9); 半径为2。

8. 再绘制一圆:圆心坐标为(95.8,182.6);半径为2。

7、8两步绘制的圆,代表小车的两个轮子。

9. 点选直线工具,打开正交模式,绘制出小车的顶部, 此时的整个图形如图 4.20 所示。

10.点选阵列工具;选择窗口中的小车为阵列对象;选择 矩形阵列方式 即 R 方式);输入行数为 1";输入列数为 4"; 输入列间距为" 43"。回车后完成矩形阵列,大矩形的上边出 现 4 个小车。

11.点选镜像工具;选择4个小车为镜像对象;捕捉大矩形的水平中心轴为镜像轴。完成镜像操作后的图形如图4.21所示。

12.选择 修改/拉伸"菜单命令;用交叉方式选择大矩形 为拉伸;打开正交模式,指定大矩形的右下角点为第一个基点; 指定右下角点要达到的距离(第二个基点),回车后完成大矩 形的拉伸操作。此时的图形如图4.22所示。

图 4.21

图 4.22

13. 点选复制对象工具,选择后两列小车为复制对象,将 其水平方向复制,如图 4.23 所示。

图 4.23

14.关闭正交模式,将右上角小车移动到大矩形的左侧居 中处。

15.选择右下角小车,从快捷菜单中选择"旋转"命令, 将其旋转90度;然后再将旋转后的小车移动到大矩形右侧居 中处。至此,我们完成了整个停车场的绘制,效果如图 4.19 所 示。

4.6 楼梯造型

4.6.1 实例效果

本节绘制建筑结构中的楼梯,效果如图 4.24 所示。

图 4.24

4.6.2 制作过程

1.新建一个文件。重新设置其绘制界限:默认左下角点为(0,0);右上角点为(400,300)。

2. 输入" ZOOM " 命令; 再输入" a", 即全屏显示。

3.在窗口下面的捕捉方式上单击鼠标右键,从弹出的下 拉快捷菜单中选择"设置"命令,弹出"草图设置"对话框: 勾选"启用捕捉"和"启用栅格"这两项前的复选框;将"捕 54......

捉 " 栏下的 捕捉 X 轴间距 " 和 捕捉 Y 轴间距 " 文本框都设 置为 5"。单击 确定 " 按钮后 , 窗口中出现栅格。

4. 点选直线工具,在窗口中绘制一个矩形:第一点相对 坐标为"@0,-120";第二点相对坐标为"@60,0";第三点相 对坐标为"@0,120";再输入"c"命令闭合矩形。

5.再用直线工具,捕捉前面矩形上、下两边的中点,绘 制线段。此时的图形如图 4.25 所示。

6.点选多段线工具;以矩形的左上角点为起点,绘制到
矩形右上角的线段;再垂直向上绘制,输入下一点相对坐标
"@0,40";再向左水平绘制,输入下一点相对坐标"@-60,0";再输入"c"命令闭合多段线。此时的图形如图 4.26 所示。

图 4.25

图 4.26

7.选择"视图/工具栏"菜单命令,弹出"工具栏"对话框,勾选"视图"工具栏前的复选框,关闭对话框,"视图" 工具栏显示在窗口中。

8.单击"视图"工具栏中的"西南等轴测视图"按钮, 改变视图角度。再单击实时缩放按钮,将图形缩小。

9.单击鼠标右键,从快捷菜单中选择"平移"命令,将 图形平移到左下角位置。然后再从快捷菜单中选择"退出"命

10.点选复制对象工具;选择整个图形为复制对象;选择 图形的下边中点为移动基点;输入目的地的相对坐标 @60, 40",这样就将原图形复制了一份。

11.重复复制对象命令,将前面复制的图形也复制一份, 目的点相对坐标仍为"@60,40"。此时的图形如图 4.27 左图 所示。

12.点选多段线工具,绘制最上层图形和中间层图形间的 楼梯连接矩形。重复多段线命令,绘制中间层和最下层的楼梯 连接。绘制完连接后的图形如图 4.27 右图所示。

图 4.27

13. 在命令提示行输入"extrude"命令;选择上面的楼梯 连接为拉伸对象;输入拉伸高度为"5";回车默认拉伸角度为 0。

14. 重复 extrude 命令,将下面的楼梯连接的拉伸高度设为"5"。

15.同样将中层图形中的小矩形的拉伸高度设为"5"。此时的图形如图 4.28 所示。

16.点选删除工具,将除拉伸了图形外的所有图形都删除。

17. 点选复制对象工具,将删除后剩下的图形复制一份。 单击鼠标右键,从快捷菜单中选择"平移"命令,调整两个部 分之间的位置,如图 4.29 所示。

从快捷菜单中选择"退出"命令。

图 4.28

图 4.29

18. 在命令提示行输入"render"命令,弹出"渲染"对话框。保持对话框中的默认设置不变,单击下面的"渲染"按钮。渲染后的效果如图 4.24 所示。

第5章 实例精选——居家用品

本章将有选择性地讲解几个居家用品的绘制方法:花瓶、 烟灰缸、录音机。

5.1 花瓶

5.1.1 实例效果

制作出的花瓶效果如图 5.1 所示。

图 5.1

5.1.2 制作过程

1.新建一个文件。

2. 设置绘图界限。

选择 格式/图形界限"命令;然后在下面的命令提示行回 车默认左下角坐标为 0,0);输入右上角坐标为 400,300)。

3. 选择"工具/草图设置"菜单命令,打开"草图设置"

对话框:选中 启用捕捉"和 启用栅格"这两项前的复选框; 设 捕捉"栏下的捕捉间距为 5";设置 栅格"栏下的栅格 间距也为 5"。单击 确定"按钮关闭对话框。

4. 输入" ZOOM " 命令; 再输入" a", 即全屏显示。

5. 绘制半个花瓶剖面图。

(1)点选多段线命令;在图形区合适位置单击作为第1 点;打开正交模式,向右绘制水平线,在适当处单击作为第2 点;再垂直向下,在适当处单击作为第3点。

(2)继续绘制。单击鼠标右键,从快捷菜单中选择"圆弧"命令,开始画第一段圆弧:在命令行中输入"S",然后在窗口适当处点击作为圆弧第二点;再点击一个位置作为圆弧另一端点。此时的图形如图 5.2 所示。

(3)继续绘制第二段圆弧。输入"S";点击圆弧第二点; 点击圆弧另一端点。

(4)同样绘制第三段圆弧。

(5)单击鼠标右键,从快捷菜单中选择"直线"命令, 再向右绘制水平线,向下绘制垂直线,向左绘制水平线。

(6) 从快捷菜单中选择' 确认 " 命令,完成本次多线段的绘制。绘制完的花瓶半剖面如图 5.3 所示。

6.点选直线工具,在花瓶剖面左侧适当距离处绘制一垂 直线,该垂直线将作为旋转成花瓶曲面的旋转轴。如图 5.4 所 示。

7. 将视图转换为"西南等轴测视图"。

8. 在命令提示行输入" surftab1 " 命令; 输入 surftab1 的 新值为" 16"。再输入" surftab2 " 命令; 输入 surftab2 的新值 也为" 16"。

9.显示"曲面"工具栏。

10.单击"曲面"工具栏中的"旋转曲面"按钮;选择前 面所绘花瓶剖面为旋转对象;选择前面所绘直线为旋转轴;回 车默认起点角度为"0";回车默认包含角度为"360"。旋转生 成花瓶曲面。

11.选择"修改/三维操作/三维旋转"菜单命令;选择图 形作为旋转对象,回车结束对象选择;在命令提示行输犬 X", 即以X轴为旋转轴;回车默认X轴的零点 0,0,0);输入旋 转角度为"90"。回车后整个图形就绕X轴旋转了90度。

12. 在命令提示行输入" ZOOM " 命令,将旋转后的图形 缩小,然后从快捷菜单中选择" 退出 " 命令。

13. 删除旋转轴和花瓶半剖面线。

14.将视图转换为左视图。

15. 绘制花瓶轮廓曲线。

打开正交框,点选多段线命令;在窗口中指定多线的第一点;在下面的命令提示行中输入"A",即进行圆弧绘制;再在下一个提示行中输入命令"S";在窗口中指定圆弧第二点;再

指定圆弧的另一端点;打开正交模式,继续绘制花瓶把的其他 两段圆弧,如图 5.5 所示。

16.将视图转换为俯视图。

17. 点选画圆工具,在窗口中绘制一个适当大小的圆。

18. 在命令提示行输入"extrude"命令;选择圆为拉伸对象;在拉伸高度提示行中输入"P",即按指定路径拉伸;点选前面所绘曲线为拉伸路径(此时显示为一线段)。回车后即出现拉伸图形。

19. 点击'三维动态观察器"按钮,调整视角,此时的图 形如图 5.6 所示。

图 5.5

图 5.6

20.单击鼠标右键,从快捷菜单中选择 着色模式/体着色" 命令,花瓶就被着色。

21.调整图形的观察视角,然后将其平移到窗口正中,如 图 5.7 所示。

22.单击鼠标右键,从快捷菜单中选择 动态观察"命令, 重新打开动态观察器。将图形调整到合适视角,然后退出观察器。

图 5.7

23.将前面所绘制的花瓶把手轮廓线删除。

24. 点选移动工具,将花瓶手柄移动到紧挨花瓶的右侧。

25.将视图切换到左视图,点选旋转工具;选择手柄为旋 转对象;点击手柄最下面圆弧的顶点作为旋转基点;在窗口中 直接指定旋转角度。回车后完成旋转操作。

26.选择"三维动态观察器",观察图形。然后从快捷菜 单中选择"退出"命令,退出动态观察器。

5.2 烟灰缸

5.2.1 实例效果

本例绘制一个烟灰缸,效果如图 5.8 所示。

图 5.8

5.2.2 制作过程

 1.新建一个文件。设置图形边界左下角为(0,0);右上 角为(400,300);设置全屏显示。

2. 在"草图设置"对话框中勾选"启用捕捉"和"启用 栅格";捕捉间距为"5";栅格间距为"10"。

3. 将视图转换为西南等轴测视图。

4. 在命令提示行输入"box"命令,来绘制长方体;回车 默认长方体角点(0,0,0);在下一行中输入"1",即以指定 长度的方式来绘制;输入长度为'120";输入宽度为'120"; 输入高度为"30"。

5.用实时缩放工具放大所绘的长方体,然后再用平移工 具将图形移到正中,从快捷菜单中选择'退出"命令,结束平 移。

6.在命令提示行输入"UCS",来重新设置用户坐标原点; 在下一行中输入"m",即移动;然后在窗口中点击长方体的一 个顶点作为新坐标原点。如图 5.8 所示。

7. 点选画圆命令;输入圆心坐标(60,60);指定半径为 "45"。

8. 在命令提示行输入" isolines " 命令;在下一行中输入 ISOLINES 的新值为" 10 "。

9. 输入"extrude"命令;选择圆为拉伸对象;输入拉伸 高度为"-15";输入拉伸角度为"30"。拉伸后的整个图形如图 5.9 所示。

10. 输入"UCS"命令来建立新的坐标系:在下一行中输入"n",即建立新坐标系;在下一行中输入"za";在窗口中点击原坐标系的原点为新原点;以长方体上表面上原点所在的对

角线方向为 Z 轴方向。

图 5.8

图 5.9

11. 输入" cylider"命令来绘制圆柱体;选择坐标原点为 底面中心;输入底面半径为" 5";输入高度为" 40"。这样就 绘制出一个底面在 XY 面上的圆柱体。如图 5.10 所示。

12. 再输入" UCS"命令;在下一行回车默认世界坐标系。

13.点选阵列工具;选择圆柱体为阵列对象;输入阵列类型"P",即环形阵列;输入阵列数目为"4";回车默认填充角度为360度;回车默认不删除源对象。

14. 在命令提示行输入"fillet"命令,为长方体的顶角倒圆角,圆角半径为30;重复倒圆角命令,直到所有顶角都被倒圆角。倒完圆角的整个图形如图5.11所示。

图 5.11

15. 在命令提示行输入"subtract"命令,进行差集布尔运算;选择长方体为被减体;选择中间的圆台和4个圆柱体为减除对象,差集运算后的图形如图5.12所示。

图 5.12

16. 输入" hide"命令进行消隐观察。

17. 输入"render"命令,打开"渲染"对话框,单击"渲染"按钮,对图形进行渲染。效果如图 5.8 所示。

5.3 录音机外观

5.3.1 实例效果

本例运用各种绘图工具和方法来制作录音机平面外观,效 果如图 5.13 所示。

5.3.2 制作过程

1.新建一个文件。其图形边界左下角 0,0),右上角 560, 360)。

2. 打开栅格,设置全屏显示。

3. 点击图层按钮 🔄 , 弹出"图层"对话框。在该对话框 中单击"新建"按钮, 下面的列表框中出现一个新图层, 更名

为"Center";在下面的"详细信息"栏中设置"颜色"为"红色";点击"线型"右边的下三角形按钮,弹出"选择线型" 对话框,单击"加载"按钮,弹出"加载或重载线型"对话框, 在可用线型"栏下选择线型"为CENTER"。单击两次确定"按钮,完成"Center"图层的建立。

图 5.13

4. 再新建一个图层" draw ", 颜色为" 白色 "; 线型为 " Continuous "。

5. 再新建一个图层" hatch ", 颜色为" 绿色 "; 线型为 " Continuous "。

6. 在图层列表框中选择"Center"图层为当前图层。

7. 点选直线工具,绘制水平直线,两端点坐标为(100, 150)(500,150),回车确认。

8. 重复直线命令,绘制垂直直线,两端点坐标为(200, 70)(200,230),回车确认。

9. 选择偏移命令, 垂直直线向右偏移 200。

10. 将图层" draw"设置为当前图层。

11. 点选矩形工具绘制矩形;指定第一角点为 150, 100);

指定第二角点为(250,200)。

12. 点选复制对象工具,将矩形水平向右复制一份,此时 的图形如图 5.14 所示。

图 5.14

13.点击画圆工具,以左边正方形的中心为圆心,绘制一 个半径为 40 的圆。再用复制对象命令将该圆也复制一份到右 边正方形的相应位置上。

14.再用矩形工具绘制一个矩形:第一角点为 260,125); 另一角点为 340,175)。

15.再绘制一个矩形:第一角点为(270,130);另一角 点为(330,170)。

16.再绘制一个矩形:第一角点为(270,130);另一角 点为(330,170)。

17.再绘制矩形:第一角点为 130,70);另一角点为 470, 260)。

18.再绘制矩形:第一角点为(430,300);另一角点为(170,260)。

19. 再绘制三个矩形:第一角点分别为(175,260)(190, 250)(260,220);另一角点分别为(425,290)(410,220) (265,245)。此时的图形如图 5.15 所示。

20. 下面绘制录音机波段线。

(1)连续使用 3 次直线命令,绘制 3 条直线,第一个端点坐标分别为(215,220)(215,230)(400,220);另一端点坐标分别为(215,240)(400,230)(400,240)。

(2) 绘制波段线上的小刻度。

重复直线命令,绘制直线(225,230)(225,238)。

点选阵列命令:阵列对象为 中所绘小线段;回车默认 矩形阵列类型 R 回车默认阵列行数为1 输入阵列列数为 18"; 指定列间距为" 10",回车完成阵列。此时的图形如图 5.16 所 示。

图 5.15

图 5.16

21. 绘制录音机上的功能按键。

(1)用矩形工具绘制一个矩形,两角点坐标为(200,260)(210,268)。然后点选图案填充命令,为矩形填充图案
 "ANSI37"。

(2)点选阵列命令。用实时缩放工具将前面的填充矩形放大。然后恢复执行阵列命令,选择矩形边框和其中的填充图案为阵列对象;回车默认矩形阵列R;回车默认行数为1;输入列数为"5";输入列间距为"18"。回车完成阵列。

将图形缩小,如图 5.17 所示。

图 5.17

22. 再绘制一个矩形,两角点坐标为(145,225)(160, 230)。再将该矩形以矩阵方法阵列,行数为3,列数为1,行 间距为10。

23. 点选倒角工具,将两个圆形喇叭外的两个正方形倒角 为八边形,倒角距离为 25。

24.为两个圆形喇叭填充图案 HONEY"。 至此完成整个录音机的绘制,如图 5.13 所示。

第6章 实例精选—机械零件

本章有选择性地讲解几个机械零件的绘制,如:滑轮、轴 测图、轴零件立体图、零件图、六角螺母等。

6.1 滑轮

6.1.1 实例效果

绘制出的滑轮效果如图 6.1 所示。

6.1.2 制作过程

1.新建一个文件。

2. 点选直线工具,打开正交模式,在窗口中绘制一水平 直线。

3. 重复直线命令,绘制一垂直直线与水平直线相交。

4.重复直线命令来连续绘制多个线段,如图 6.2 左图所示。 多线段的起点在垂直线上,终点也在垂直线上(打开对象捕捉 来捕捉终点),中间绘制水平或垂直线时打开正交模式,绘制 斜线时则关闭正交模式。

5. 在命令提示行输入" pedit " 命令;选择步骤 4 中所绘 多线段中的一条;在' 输入选项"提示行中输入" j",即合并 多个线段为多义线;再选择步骤 4 中所绘的其余所有线段;回 车后即将多个线段编辑为一条多线。

 6.点选镜像命令;选择前面所编辑的多线为镜像对象; 捕捉垂直线为镜像线;回车默认不删除源对象。镜像后的图形 如图 6.2 右图所示。

7. 输入"pedit",将镜像后的两部分多线编辑为一个命域。

8. 在命令提示行输入" isolines " 命令;在下一行中键入 新值" 30 "。

图 6.2

9. 将垂直线删除。

10.在命令提示行输入"revolve"命令;选择步骤7中所 编辑多义线为旋转对象;选择水平线为旋转轴;回车默认旋转 角度为 360 度。这样就形成了滑轮模型,如图 6.3 所示。

11.选择三维动态观察器,再单击鼠标右键,从弹出的快

捷菜单中选择 着色模式/消隐 " 命令。调整图形到一个最佳视 角,最后从快捷菜单中选择 退出 " 命令,退出动态观察器。 此时的滑轮图形如图 6.4 所示。

图 6.3

图 6.4

12. 点击'渲染"工具条中的渲染按钮 🕢 , 弹出'渲染" 对话框,单击对话框下面的'渲染"按钮,完成对整个图形的 渲染着色,渲染后的效果如图 6.1 所示。

6.2 轴测图

6.2.1 实例效果

绘制出的轴测图效果如图 6.5 所示。

6.2.2 制作过程

1.选择"工具/草图设置"菜单命令,弹出"草图设置" 对话框。在 捕捉和栅格"选项卡中,选择 捕捉类型和样式" 项下的"等轴测捕捉",然后设置捕捉间距为"1";在"极轴 跟踪"选项卡中,设置 极轴角设置"项下的 角增量"为 15"。

单击'确定"按钮,关闭'草图设置"对话框。

图 6.5

2.打开下面的 极轴 "模式,将图层下拉列表中的 Center" 图层设置为当前图层。

 3. 点选直线工具,在窗口中绘制一斜线。重复直线命令, 再绘制一垂直线,如图 6.6 所示。

4. 将图层"0"设置为当前图层。

5. 点选椭圆工具;在下一行中输兴 i",即绘制等轴测圆; 点选前面所绘两直线的交点为圆心;输入圆半径为"18";回 车完成本次椭圆绘制。

6.重复椭圆命令,以前面所绘圆心为圆心,再绘制一个半径为"30"的圆,此时的图形如图 6.7 所示。

图 6.7

7. 点选直线工具,在大圆左侧绘制一条长 100 的垂直线 与大圆相切,切点为该直线的上端点。

8.转到左平面绘图。点选直线工具,过切线下端点绘制 一直线。

9. 重复直线命令,以步骤 8 中所绘制直线的一个端点为 起点,绘制一垂直直线,长度也为 100。此时的图形如图 6.8 所示。

10.在窗口中单击鼠标右键,从快捷菜单中选择"带基点 复制"命令;点选切点为基点;选择大圆为复制对象;回车确 认。然后再单击鼠标右键,从快捷菜单中选择"粘贴"命令; 按提示选择步骤9中所绘垂直线的上端点为插入点,完成粘贴 后的图形如图 6.9 所示。

图 6.8

图 6.9

11.选择偏移命令;输入偏移距离为"20";点选步骤8 中所绘直线为偏移对象;在偏移直线右侧点击确定偏移方向。 这样就将直线偏移复制了一份。

12. 点选剪切命令,选择前面的切线为剪切边,将偏移直 线超出切线的多余部分剪掉。此时图形如图 6.10 所示。

13. 点选直线工具,在大圆右侧绘制一条长为 80 的垂直

线与大圆相切;再绘制连接该垂直线下端点和大圆左切线下端 点的直线。回车完成本次直线的绘制操作。

14.重复直线命令,过80长度直线的下端点绘制偏移直线的平行线,长度为50。此时图形如图6.11所示。

15. 将图层 Center 设置为当前图层。

16. 连续使用两次直线工具,分别以图 6.11 中直线 1 的端 点和直线 2 的中点为起点绘制两条直线,如图 6.12 所示。

17. 点选椭圆工具,按照前面的方法,捕捉直线1和直线2的交点为圆心,绘制一直径长度为直线2的长度的圆。

18. 点选直线工具,捕捉步骤 17 中所绘圆的左切点为起 点,向下绘一垂线,如图 6.13 所示。

19.在窗口中单击鼠标右键,从快捷菜单中选择"带基点 复制"命令;捕捉步骤17中圆的左切点为基点,圆为复制对 象。然后再单击鼠标右键,从快捷菜单中选择"粘贴"命令, 选择图6.13中所示交点为插入点,将复制对象从该处粘贴。

20.再用剪切命令剪切掉步骤 19 中源对象圆和复制圆的 上半部分,再用画圆工具绘制与源对象圆同心的小圆后,就形 成图 6.5 所示图形。

AutoCAD2002 高级实例教程—入门与提高

图 6.12

图 6.13

6.3 轴零件立体图

6.3.1 实例效果

绘制出的轴零件立体图效果如图 6.14 所示。

图 6.14

6.3.2 制作过程

 1.选择"格式/图形界限"菜单命令;在命令提示行回车 默认左下角坐标为(0,0);输入右上角坐标(120,90)。

2.选择"工具/草图设置"菜单命令,弹出"草图设置" 对话框,从中勾选。启用捕捉"和。启用栅格"这两个复选框;

设置捕捉间距为"5";栅格间距为"10"。

3. 输入" ZOOM "命令;在下一行输入" a",即全屏显示。 4. 绘制零件半剖面图。

(1)点选多段线工具,在窗口中单击指定起点;输入下一点相对坐标"@200,0"。

(2)将所绘水平直线缩放到适当大小,单击鼠标右键, 从快捷菜单中选择"退出"命令,恢复多段线命令的执行。

(3)输入多段线下一点坐标"@0,70";再输入下一点的坐标"@-80,0";下一点坐标"@0,-50";下一点"@-50,0";
下一点"@0,20";下一点"@-50,0";下一点"@-20,-20";最后输入"c",闭合整个多段线,如图 6.15 所示。

图 6.15

5. 在命令提示行输入" revolve " 命令;选择前面绘制的 多线为旋转对象,回车结束对象选择;捕捉多线的底边为旋转 轴;回车默认旋转角度为 360,就将半剖面图旋转为一个实体。

6.选择"视图/三维动态观察器"菜单命令,调整图形到 最佳视图,然后关闭三维动态观察器。此时整个图形如图 6.16 所示。

7. 在命令提示行输入" isolines " 命令;在下一行输入 ISOLINES 的新值为" 20 "。

8.选择 视图/重生成"菜单命令,重生成模型。如图 6.17 所示。

图 6.16

图 6.17

9.选择"视图/消隐"命令,对模型进行消隐。

10.在命令提示行输入"render"命令,弹出"渲染"对 话框,单击"渲染"按钮,完成对模型的一般渲染,效果如图 6.14 所示。

6.4 零件图的生成

6.4.1 实例效果

生成的零件图效果如图 6.18 所示。

图 6.18

6.4.2 制作过程

1.新建一个文件,设置其图形界限:左下角(0,0),右上 角(297,210)。

2. 在命令提示行输入" ZOOM "; 在下一行输入" a", 即 全屏显示。

3. 设置单位。选择'格式/单位"菜单命令,弹出"图形 单位"对话框,全部保持该对话框各项的默认值不变,单击确 定"按钮。

4.点击图层按钮 → ,出现"图层特性管理器"对话框。
 在该对话框中进行以下设置:

(1)单击"新建"按钮,新建图层1,该图层的颜色和线型都保持默认值不变。

(2) 再单击"新建"按钮,建立图层 2。单击图层 2 的颜 色方块,弹出"颜色选择"对话框,在下面的"颜色"文本框 中输入"141",单击"确定"按钮,即将图层 2 的颜色设置为 "141"号颜色;再单击后面的 Continuous"线型项,弹出 选 择线型"对话框,从中单击"加载"按钮,弹出"加载或重载 线型"对话框,选择线型为"ACAD_ISO10W100",单击"确 定"。

(3) 再新建一个图层 3, 在对话框下面的 颜色"下拉选 项中选择黄色; 再加载其线型为 ACAD ISO02W100"。

(4)单击"确定"按钮,关闭"图层特性管理器"对话框。

5. 将图层 2 设置为当前图层。在该图层中绘制辅助轴。

 6.打开正交模式,点选直线工具,在窗口中绘制一水平 直线。

7. 重复直线命令,再绘制一垂直直线。

8. 将图层1设置为当前图层。

9. 点选画圆工具;捕捉前面两直线的交点为圆心;输入 半径为"10"。

10.重复画圆命令,绘制一个与前面的圆同心、半径为14 的圆。

11.选择偏移命令;输入偏移距离为 50";选择垂直线为 偏移对象;点击右侧为偏移方向。

12.选择复制对象按钮;选择两同心圆为复制对象;圆心 为基点;所复制的垂直线与水平线的交点为目标点,将同心圆 复制一份。此时图形如图 6.19 所示。

13. 绘制两大圆的切线。

点选直线工具;捕捉左边大圆上的切点为第一点;按键盘 上的 Shift+鼠标右键,从弹出的快捷菜单中选择⁴切点";再捕 捉右边大圆上的切点为直线第二点;回车完成切线绘制。

14. 点选镜像命令;选择切线为镜像对象;捕捉水平线为 镜像线;回车默认不删除源对象。

15.按步骤 12、13 所示方法,绘制两小圆的公切线。此时图形如图 6.20 所示。

图 6.20

16.选择偏移工具;输入偏移距离为"110";选择左边垂 直线为偏移对象;点击右侧为偏移方向,这样就生成一个新垂 直中心线,它与水平线同样有一个交点。

17. 点选画圆工具,以步骤 15 中的交点为圆心,绘制半 径为 14 的圆;重复画圆命令,绘制同心圆,半径为 18。此时 图形如图 6.21 所示。

18. 将图层 2 设置为当前图层,继续绘制一些辅助线。

19. 点选直线工具,以最右边圆的圆心为第一点;输入下 一点的坐标为"@80<-130"。

20. 偏移复制水平轴。点选偏移工具;输入偏移距离为50; 选择水平轴为偏移对象;点击下方为偏移方向。

21. 点选复制对象命令;选择左边两同心圆为复制对象; 单击同心圆圆心为复制基点;单击下面水平轴与最右边垂直轴 的交点为目的点。复制完后的整个图形如图 6.22 所示。

图 6.21

图 6.22

22. 点选圆弧工具;在下一行中输入" c",即指定圆心; 在窗口中单击右上角同心圆的圆心作为圆弧的圆心;以下边同 心圆中的小圆左切点为圆弧起点,如图 6.22 中标号为" 1"的 点;在下一行中输入" a",即指定圆弧角度;在下一行中输入

圆弧包含角为"-150";回车后完成圆弧绘制。

23. 点选复制对象命令;选择下面的同心圆为复制对象; 选择同心圆的圆心为复制基点;圆弧与图 6.22 中斜线的交点为 目标点。复制完后的图形如图 6.23 所示。

图 6.23

24. 下面将绘制一簇同心圆弧,其圆弧包含角都为斜线与 右边垂直轴的夹角。绘制完的同心圆弧共有4个,如图 6.24 所 示。绘制方法同上面圆弧绘制方法一样,大致过程如下:

(1)先绘制最上面的一段圆弧,绘制完后选中该圆弧。

图 6.24

(2) 将图层 1 设置为当前图层, 然后再绘制其他三段圆 • 82. 弧。

注意与图 6.23 对照,从而了解这些圆弧的起点和终点。

25. 点选画圆命令,以圆弧的圆心为圆心绘制一个半径为 34 的圆。

26.偏移水平轴。点选偏移工具;输入偏移距离为 60;选 择上面一条水平轴为偏移对象;偏移方向为上侧。

27. 再偏移垂直轴。将右边垂直轴向左偏移 50。

28.以上面偏移的两个轴的交点为圆心,绘制两个同心圆, 半径分别为15、18。如图6.25所示。

图 6.25

29. 下面绘制一个圆。

(1)选择⁶ 绘图/圆/相切、相切、半径 " 菜单命令,从而 指定了决定圆的方式。

 (2)按照下面两个提示行的提示,依次点击前面的大圆
 上公切线、步骤 28 中所绘大圆的左边一点,这样就指定了两 个"相切"切线。

(3)在下面一行中输入圆半径为"50"。

30.用步骤 29 中的画圆方法,再绘制一个圆,该圆与大

圆下公切线、下面同心圆的大圆相切,其半径仍为50。此时的 图形如图 6.26 所示。

图 6.26

31. 绘制两条外公切线。

点选直线工具,按下 Shift+鼠标右键,从快捷菜单中选择 "切点"命令,然后在窗口中捕捉一个切点;再按下 Shift+鼠 标右键,从快捷菜单中选择'切点"命令,然后在窗口中捕捉 另一个切点。这样就绘出了两个大圆的一条外公切线。

再用同样的方法来绘制另一条外公切线,如图 6.27 所示。 注意对照图 6.26,找出两条外公切线的切点。

32.点选修剪工具,选择步骤 31 中所绘两条外公切线为 剪切边,将这两条切线所夹的大圆多余圆弧剪切掉,剪切后的 图形如图 6.28 所示。

33.继续使用修剪工具,将其他多余线剪切掉,最后形成 效果图如图 6.18 所示。

图 6.27

图 6.28

6.5 六角螺母

6.5.1 实例效果

下面绘制机械图中常用的六角螺母,效果如图 6.29 所示。

图 6.29

6.5.2 制作过程

 选择'工具/选项"菜单命令,弹出'选项"对话框, 点击该对话框图中的'颜色"按钮,弹出'颜色选项"对话框, 将其中的'颜色"下拉选项设置为'白色",单击该对话框的
 "应用并关闭"按钮;最后单击'选项"对话框的'确定"按钮,这样就将背景颜色设置为白色。

2. 点击图层按钮 → ,在弹出的'图层特性管理器"对话 框中,新建一个图层 1,设置其颜色为'10"号颜色,线宽为 "0.15 毫米";新建图层 2,其颜色为"黄色",线型为 ACAD_ISO02W100;新建图层 3,颜色为'141"号颜色,线 型为 BORDER2。

3.设置视图环境。图形界限:左下角(0,0)、右上角 (200,100);设置为全屏显示。

4. 将图层 3 设置为当前图层。

5. 点选直线工具,打开正交模式,在窗口中绘制一水平 轴线。重复直线命令,绘制一垂直轴。

6. 将图层0设置为当前图层。

7. 点选画圆工具,以两轴线交点为圆心,绘制一半径为 26 的圆。再重复两次画圆命令,绘制前面圆的两个同心圆,半 径分别为 12、16。此时的图形如图 6.30 所示。

8. 点选多边形工具;输入边数为"6";点击圆心为多边 形的中心;在下一行输入 c",即外切于圆;输入圆半径为 26", 回车即绘制出一个正六边形。

9. 点选修剪工具,选择两轴线为剪切边;将半径为16的 圆的左下部分删除,此时图形如图6.31所示。

图 6.30

图 6.31

10.点选偏移工具;单击圆心为偏移距离第1点;单击六 边形左顶点为偏移距离第2点;选择垂直轴为偏移对象;单击 左侧为偏移方向,这时产生一垂直轴线。重复几次偏移命令, 将垂直轴进行偏移,偏移完后的图形如图 6.32 所示。

11. 点选矩形工具;捕捉左垂直线上一点为左角点;捕捉 右垂直线上一点为右角点,绘制出一个矩形。

12.继续使用直线工具,沿矩形中的垂直线绘制两直线, 此时图形如图 6.33 所示。

图 6.32

图 6.33

12. 点选偏移工具,将垂直中心轴向右偏移到大圆右切点。

13. 点选直线工具;捕捉偏移垂直线与六边形的一个交点 为直线的第1点;输入第2点坐标 @10<30",回车完成直线

绘制。

14. 点选画圆工具;捕捉矩形下边中点为圆心;步骤 13 中所绘制的直线与矩形右边的交点到指定圆心的距离为半径, 绘制一个圆,如图 6.34 所示。

15. 点选复制对象工具,将步骤 14 中所绘圆复制一份, 复制的圆的圆心为步骤 14 中所绘圆的上切点。

16.将步骤14中所绘圆删除。

17.点选修剪工具,选择矩形中的两条竖线为剪切边,将 复制圆被两竖线所截的大圆弧剪掉,此时的图形如图 6.35 所 示。

18.点选圆弧工具,捕捉复制余下圆弧的右端点为圆弧第 1点;步骤13中所绘直线与矩形的左交点为第2点;步骤13 中所绘直线与矩形的右交点为第3点,回车完成圆弧绘制。

19. 将步骤 13 中所绘直线删除。

20. 点选镜像工具,将步骤 18 中所绘圆弧沿垂直中心线 镜像,最后形成图 6.29 所示效果图。

图 6.34

图 6.35

第7章 实例精选—综合创意

本章来制作几个综合实例,包括:百合花花瓣、飞舞的飘 带、标志牌图案等。

7.1 百合花花瓣

7.1.1 实例效果

制作出的百合花花瓣效果如图 7.1 所示。

图 7.1

7.1.2 制作过程

1.新建一个文件,设置其图形界限为:左下角(0,0),右 上角(500,300);并设置为全屏显示。

2.选择"格式/草图设置"菜单命令,勾选"启用捕捉" 和"启用栅格"复选框。

3. 点击图层按钮,弹出"图层特性管理器"对话框,单 击"新建"按钮,新建一图层,命名为"flower",设置图层颜 色为"蓝色",其他保持默认值不变。然后单击"当前"按钮, 即将"flower"图层设置为当前层。

最后单击'确定"按钮。

4. 点选画圆工具;输入圆心坐标为(180,150);输入半径 值为"100"。

5. 重复圆命令,圆心坐标为 330,150),回车默认半径仍为100。

6. 点选直线工具绘制直线,捕捉两圆的两个交点为直线的两点,回车确认。此时的图形如图7.2 所示。

7.选择修剪工具;选择直线为剪切边,回车确认;点击 两圆被直线所截的大圆弧部分,将它们删除,这样就形成一个 叶片形状,如图 7.2 右图所示。

8. 点选阵列工具;选择直线为阵列对象;在下一行中输入" p",即阵列类型为环形;捕捉叶片上端点为阵列中心点; 输入阵列数目为" 16";输入填充角度为" 40";回车默认旋转 阵列中的对象。这样就完成了对叶片的阵列,如图 7.3 左图所示。

图 7.2

9. 点选镜像工具;选择阵列的图形为镜像对象;直线为 镜像线;回车默认不删除源对象,镜像后的图形如图 7.3 右图 所示。

10.点选修剪工具;选择叶片轮廓线为剪切边;将叶片外的多余直线都剪切掉,如图7.4所示。

11. 再点选阵列命令;选择整个图形为阵列对象;在下一 行中输入" p",即阵列类型为环形;捕捉叶片下端点为阵列中 心点;输入阵列数目为" 16";回车默认填充角度为" 360"; 回车默认旋转阵列中的对象。这样就完成了整个花瓣的制作过 程,效果如图 7.1 左图所示。

图 7.3

图 7.4

7.2 飞舞的飘带

7.2.1 实例效果

这里用多段线工具及多段线编辑工具来制作一个飞舞状的飘带,如图 7.5 所示。

图 7.5

7.2.2 制作过程

1. 制作飘带轮廓线。

(1)在命令提示行输入"pline"多段线命令。然后根据 提示,依次指定各个点,指定完最后一点后,单击确认按钮。 绘制的多段线如图 7.6 左图所示。

(2)在工具栏上单击鼠标右键,从快捷菜单中选择"修改II"命令,显示该工具条。

(3) 在 修改 II " 工具条中单击编辑多段线按钮 ☑; 点选 多段线,回车; 命令提示行提示 输入选项 ", 输入 S", 即 样条曲线,回车后的图形如图 7.6 右图所示。

(4)单击鼠标右键,从快捷菜单中选择"确认"命令。

图 7.6

2. 选中多段线, 然后单击对象特性按钮 // 弹出'特性" 对话框,将'基本"栏中的'厚度"更改为'10"。这样就修 92 ·····

改了多段线的厚度。

3.选择"视图/工具栏"菜单命令,打开"工具栏"对话框,在其中勾选"视图"项,这样关闭该对话框后,"视图" 工具条就显示在窗口中。

4.将视图切换到西南等轴测视图,这时可以观察到飘带的基本形状已经形成。

5. 再单击编辑多段线按钮 2; 然后选择窗口中的多段线; 在'输入选项"提示行中输入"w",即宽度;在下一个提示行 中输入多段线的新宽度为"0.5"; 回车后就形成了图7.5 所示 的效果。

7.3 标志牌图案

7.3.1 实例效果

本例制作禁止吸烟标志牌,包括图形绘制和文字制作两部 分,效果如图 7.7 所示。

图 7.7

7.3.2 制作过程

1.单击图层按钮🔤,弹出"图层特性管理器"对话框。

在该对话框中新建两个图层 shape "、text",前者的颜色为 红 色",后者颜色为"黄色"。

2.将 shape 图层设置为当前图层。

3.选择" 绘图/圆环"菜单命令;在下一行中输入内径为 " 60";在下一行中输入外径为 80";在窗口中点击确定圆心 位置;回车就绘制出一个红色圆环。

4.选择"绘图/构造线"菜单命令;在窗口中指定圆环的 圆心为直线第一点;再指定另一点,就绘制出一条通过圆心的 直线。

5. 点选偏移工具;输入偏移距离为"5";选择构造线为 偏移对象;在窗口中点击构造线的上方为偏移方向;再选择构 造线为偏移对象;点击构造线下方为偏移方向;回车后就产生 两条偏移线,如图 7.8 所示。

6. 将中间的构造线删除。

7.再选择" 绘图/构造线"菜单命令,绘制一条通过圆心 并与前面构造线垂直的构造线。

8.再选择偏移工具,将步骤7 中所绘构造线也向两个方向偏移,然后删除中间的构造线。

9. 点选修剪工具,选择圆环外圆为剪切边,将圆外的构 造线部分删除,此时的图形如图7.9 所示。

图 7.8

10.打开栅格,点选直线工具,在窗口中绘制一斜线;重 复直线命令再绘制一斜线,如图7.10所示,这两条线将作为下 面延伸操作中的基准线。

11.点选延伸工具,选择一条斜线为基准线,将两条构造 线延伸到该基准线;重复延伸命令,以另一条斜线为基准线, 将两条构造线的另一端延伸到这条基准线。

12.点选修剪工具,选择延伸的两条构造线为剪切边;将 两条斜线的多余部分剪切掉,剪切后的图形如图 7.11 所示,图 中形成的矩形作为代表烟的图形。

图 7.10

图 7.11

13.选择复制对象工具,复制矩形的部分,其中心轴与源 矩形的中心轴重合,这样就形成了烟的过滤嘴部分和烟体部 分,如图 7.12 所示。

14. 下面填充香烟的图案和颜色。

(1)点选图案填充命令,为香烟的烟体部分填充图案
"SOLID"。

(2)在窗口中的颜色下拉列表中选择烟体的颜色为"青 色"。

(3)同样为过滤嘴部分填充图案' SOLID ",填充颜色为 " 黄色 "。

15.再为与香烟垂直的矩形填充 SOLID 图案。此时图形如 图 7.13 所示。

16. 输入文字

(1)点选多行文字工具,在窗口中点击选择文字输入位置。

(2)在 多行文字编辑器"对话框中设置字体为 宋体";
 字号为"30",并在该对话框下面的文字编辑区内输入"禁止吸烟"文字,然后单击"确定"按钮。

(3) 点选移动工具,将文字移动到图形上。

图 7.12

图 7.13

(4)选择文字,然后单击图层下拉选项,将 text 图层设置为当前图层,此时文字颜色变为 text 图层的颜色,即黄色。 至此,我们完成了整个实例的制作过程,效果见图 7.7。

7.4 叶片的效果

7.4.1 实例效果

最后的叶片效果如图 7.14 所示。

图 7.14

7.4.2 制作过程

1.选择 格式/图形界限 "菜单命令,默认左下角坐标 0,0)、 右上角坐标(500,400),设置全屏显示。

2. 点选多段线工具,在窗口中点选第1点、第2点,绘制出一折线。

3.重复多段线命令,在窗口中指定4个点,绘制出另一 折线;再重复多段线命令,指定5个点,绘制出第三条折线, 如图7.15所示,三条线的顺序从左至右。

4. 点选直线工具;输入第1点坐标(0,0);输入第2点坐标(60,45);输入第3点坐标(0,90);在下一行回车结束命令。

5. 点击编辑多段线按钮 (;选择前面所绘制的一条折线为 编辑对象;在'输入选项"行中输入"s";回车后即将该多段 线编辑为样条曲线。此时的整个图形如图 7.16 所示。

6.点选创建块工具,弹出"块定义"对话框:在"名称" 文本框中输入"leave";单击"选择对象"按钮,返回窗口, 选择步骤4中所绘线段为块定义对象,回车结束选择,重新出

现对话框; 在 基点"栏下输入 X、Y、Z 值分别为 60、45、0; 单击"确定"按钮,完成块定义。

图 7.15

图 7.16

7. 在命令提示行输入"measure"命令;下一行提示"选择要定距等分的对象",在窗口中点选第1条多线段;下一行提示"指定线段长度",输入"b",即块;下一行提示输入要插入的块名,输入"leave";在下一行回车默认对齐对象和块; 在下一行输入线段长度为10"。这样就产生图7.17所示效果。

图 7.17

8. 重复 measure 命令,选择第2条多线段为对象,其他操 作与步骤7中一样。

9. 再重复 measure 命令,选择第3条多线段为对象,其他操作与步骤7中一样。最后就形成叶片效果。