

## 中华人民共和国国家标准

**GB/T** 13993. 3—2001

# 通信光缆系列第3部分:综合布线用室内光缆

The series of optical fiber cables for telecommunication— Part 3: Indoor optical fiber cables for generic cabling

2001 - 09 - 28 发布

2002-05-01 实施

### 目 次

| 前 | <b>言</b> |
|---|----------|
| 1 | 范围       |
| 2 | 引用标准     |
| 3 | 术语       |
| 4 | 分类       |
| 5 | 要求       |

#### 前言

本标准根据国际电联建议 ITU-T G. 650: 2000《单模光纤有关参数的定义与试验方法》、ITU-T G. 651: 1998《50/125  $\mu$ m 渐变型多模光纤光缆的特性》、ITU-T G. 652: 2000《单模光纤光缆的特性》和国际电工委员会标准 IEC 60793-2: 1998《光纤 第 2 部分: 产品规范》及其修改单 2、IEC 60793-2-10: 2000《光纤 第 2 部分: 产品规范——总则 第 10 节: A1 类多模光纤分规范》、IEC 60794-2《光缆 第 2 部分: 室内光缆——分规范》的有关规定和 YD/T 926. 1—1997《大楼通信综合布线系统 第 1 部分: 总规范》的有关规定,结合我国综合布线光缆的实际要求,制定了符合我国情况的光纤特性、光缆机械和环境性能等系列要求。本标准规定的光纤尺寸参数、光学及传输性能等效于上述国际标准的有关规定。

按照 YD/T 926. 1—1997 规定的大楼通信综合布线系统中,本标准规定的光缆只涉及二氧化硅系 A1a、A1b 类多模光纤和 B1. 1 类单模光纤。

本标准制定时,根据 GB/T 1.1-1993《标准化工作导则 第 1 单元:标准的起草与表述规则 第 1 部分:标准编写的基本规定》进行编写。

GB/T 13993 在《通信光缆系列》总标题下,包括以下部分:

第1部分:总则

第2部分:干线和中继用室外光缆

第3部分:综合布线用室内光缆

• • • • • •

本标准由中华人民共和国信息产业部提出。

本标准由信息产业部电信研究院归口。

本标准负责起草单位:信息产业部电信科学技术第五研究所,大唐电信科技股份有限公司光通信分公司。

本标准参加起草单位:信息产业部电子第八研究所。

本标准主要起草人:王则民、李然山、杨可贵。

Ι

#### 中华人民共和国国家标准

# 通信光缆系列第3部分:综合布线用室内光缆

**GB/T** 13993. 3 — 2001

The series of optical fiber cables for telecommunication— Part 3: Indoor optical fiber cables for generic cabling

#### 1 范围

本标准规定了综合布线室内光缆(以下统一简称光缆)的结构型式要求及适用性、规格、标准、制造长度、光纤特性、机械性能和环境性能等及其系列。

本标准与 GB/T 13993. 1 共同使用,适用于综合布线室内光缆的制造和使用,不适用于含金属单线或线对的光电综合缆。

#### 2 引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均 为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB/T 13993.1—1992 通信光缆系列 总则(neq CCITTG. 681, G. 652)

GB/T 15972.1—1998 光纤总规范 第1部分:总则(eqv IEC 793-1-1:1995)

YD/T 908-2000 光缆型号命名方法

YD/T 926.1—1997 大楼通信综合布线系统 第1部分:总规范(eqv ISO/IEC 11801:1995)

ITU-T G. 650:2000 单模光纤有关参数的定义和试验方法

ITU-T G. 651:1998 50/125 μm 渐变折射率多模光纤光缆的特性

ITU-T G. 652:2000 单模光纤光缆的特性

IEC 60793-2:1998 光纤 第2部分:产品规范

#### 3 术语

本标准采用符合 ITU-T G. 650、ITU-T G. 651 和 YD/T 926.1 定义的术语。

#### 4 分类

本标准参照 YD/T 908 的规定划分光缆型式、规格和编制型号。

#### 4.1 型式

光缆常用结构型式要求和适用范围如下:

- a) 光缆宜采用分立光纤构成,大芯数光缆和软线光缆也可采用光纤带或多纤单元构成。
- b)分立光纤被覆层宜采用紧套被覆结构,大芯数光缆中也可采用松套被覆结构。光纤带被覆层宜采用松套被覆结构。缆芯采用骨架式结构时,分立光纤或光纤带应无被覆层。
  - c) 缆芯结构可为中心式、绞合式、骨架式或其他合适的结构型式。
  - d) 光缆宜采用非金属加强构件,除软线光缆之外,也可采用金属加强构件。

- e) 主干光缆应具有阻水性能,可采用油膏填充结构,也可采用干式阻水结构。
- f) 光缆燃烧性能官是阳燃级,但软线光缆可以是不延燃级。
- g) 光缆护套宜为低烟无卤阻燃聚乙烯护套,也可采用低烟阻燃聚氯乙烯护套,软线光缆还可采用不延燃的聚氯乙烯护套或聚氨酯护套。建筑群主干光缆护套宜为阻燃或不延燃的铝(或钢)—聚乙烯粘结护套。有防鼠要求时可采用防鼠护层。
- h) 软线光缆还应适于移动使用,水平光缆应适于室内沿墙或沿顶布放,建筑物主干光缆应适于竖井和竖直管道布放,建筑群主干室内光缆应适于竖井、竖直管道、地下室和地下隧道布放。
- 4.2 规格
- 4.2.1 光缆中的光纤应是符合 GB/T 15972.1 规定的 A1a、A1b 类多模光纤或 B1.1 类单模光纤。
- **4.2.2** 光缆中的光纤芯数的常用系列应为:1、2、4、6、8、10、12、16、20、24、28、32、36、40、48、56、64、72、80、96、144。

这些芯数可由分立光纤构成,也可由2芯、4芯、6芯、8芯或12芯的光纤带或多纤单元构成。

#### 5 要求

#### 5.1 识别色谱

光缆护套的识别色谱应符合表 1 规定。

表 1 光缆护套识别色谱

| 光 纤 类 型 | 建筑群主干光缆 | 其 他 光 缆 |  |  |
|---------|---------|---------|--|--|
| Ala     |         | 橙       |  |  |
| A1b     | 黑       | 橙或灰     |  |  |
| B1.1    |         | 黄       |  |  |

#### 5.2 标准制造长度

光缆的标准制造长度应符合表 2 规定。

表 2 光缆标准制造长度系列

m

| 标 称 值 | 容差    |
|-------|-------|
| 3 000 |       |
| 2 000 | L 100 |
| 1 000 | ±100  |
| 500   |       |

#### 5.3 光缆中的光纤特性

#### 5.3.1 光纤涂覆层剥除力

光纤涂覆层应可从光纤上剥除,其剥除力峰值应为  $1.3 \sim 8.9 \text{ N}$ ,平均值应为  $1.0 \sim 5.0 \text{ N}$ 。

#### 5.3.2 光纤强度筛选水平和疲劳系数

光纤的全长度张力筛选水平应不低于 0.69 GPa(相当于应变约 1.0%)。 光纤的动态疲劳系数  $n_a$  值应不小于 20。

#### 5.3.3 多模光纤的其他特性

5.3.3.1 多模光纤的尺寸参数应符合表3规定。

#### 表 3 多模光纤尺寸参数

| 光纤  | 芯<br>µm | 径 包层直径<br>μm μm |                 |       | 芯/包<br>同心度误差    | 芯<br>不圆度   | 包层<br>不圆度 | 涂覆层<br>μm |          | 着色层<br>µm |     | 包层/涂覆层<br>同心度误差 |
|-----|---------|-----------------|-----------------|-------|-----------------|------------|-----------|-----------|----------|-----------|-----|-----------------|
| 大至  | 标称值     | 容差              | 标称值             | 容差    | $\mu\mathrm{m}$ | %          | %         | 标称值       | 容差       | 标称值       | 容差  | $\mu\mathrm{m}$ |
| Ala | 50.0    | ⊥2 ∩            | 125 0           | ±2.0  | €3              | <i>- 6</i> | < 2       | 245       | ⊥10      | 250       | ±15 | <19.5           |
| A1b | 62.5    | ±3.0            | $\pm 3.0$ 125.0 | ± 2.0 | <i></i> √3      | €6         | €2        | 245       | $\pm 10$ | 250 ±     | ±15 | 5   ≤12.5       |

注:上述光纤尺寸数值为一般值,当光纤(缆)用作通信设备的跳线或尾纤(缆)时,包层直径容差应为  $\pm 1~\mu m$ ,芯/包同心度误差应小于  $1~\mu m$ 。

#### 5.3.3.2 多模光纤的数值孔径应符合表4规定。

#### 表 4 多模光纤数值孔径

| 光纤类型 | Ala         | A1b         |
|------|-------------|-------------|
| 数值孔径 | 0.20±0.02   | 0.275±0.015 |
|      | 或 0.23±0.02 |             |

#### 5.3.3.3 多模光纤传输特性的分级应符合表 5 规定。

#### 表 5 多模光纤传输特性

| 波长复用情况        | 仅在 850 | nm 使用 | 仅在130 | 0 nm <b>使用</b> | 在 850 nm 和 1 300 nm 双波长使用 |       |     | <b>∻使用</b> |
|---------------|--------|-------|-------|----------------|---------------------------|-------|-----|------------|
| 光纤类型          | A1a    | A1b   | A1a   | A1b            | A                         | la    | A1b |            |
| 使用波长,nm       | 8      | 50    | 1.3   | 300            | 850                       | 1 300 | 850 | 1 300      |
| 衰减系数级别,dB/km  | 3.0    | 3.0   | 0.8   | 0.8            | 2.5                       | 0.8   | 3.0 | 0.7        |
| (最大值)         | 3.5    | 3. 5  | 1.0   | 1.0            | 2.7                       | 1.0   | 3.2 | 0.9        |
|               |        |       | 1.5   | 1.5            | 3.0                       | 1.2   | 3.5 | 1.5        |
| 模式带宽级别,MHz·km | 200    | 100   | 200   | 200            | 200                       | 400   | 160 | 200        |
| (最小值)         | 500    | 200   | 500   | 500            | 200                       | 600   | 160 | 500        |
|               | 800    | 500   | 800   | 800            | 400                       | 400   | 200 | 200        |
|               |        | 800   | 1 000 | 1 000          | 400                       | 600   | 200 | 400        |
|               |        |       | 1 200 |                | 400                       | 800   | 200 | 600        |
|               |        |       |       |                | 400                       | 1 000 | 250 | 1 000      |
|               |        |       |       |                | 400                       | 1 200 | 300 | 800        |
|               |        |       |       |                | 600                       | 1 000 |     |            |

#### 5.3.4 单模光纤的其他特性

#### 5.3.4.1 单模光纤的模场直径和尺寸参数应符合表6规定。

表 6 单模光纤模场直径和尺寸参数

| 光纤<br>类型      | 模场直径<br>μm                       |      | 包层直径<br>$\mu m$ |      | 包层<br>不圆度 | 芯 同心度误差         | 涂覆层<br>µm |     | 着色层<br>µm |     | 包层/涂覆层<br>同心度误差 |
|---------------|----------------------------------|------|-----------------|------|-----------|-----------------|-----------|-----|-----------|-----|-----------------|
| 人主            | 标称值                              | 容差   | 标称值             | 容差   | 0/0       | $\mu\mathrm{m}$ | 标称值       | 容差  | 标称值       | 容差  | $\mu\mathrm{m}$ |
| B1.1          | 8.6~9.5                          | ±0.7 | 125.0           | ±1.0 | €2.0      | ≪0.8            | 245       | ±10 | 250       | ±15 | €12.5           |
| <b>注</b> : B1 | 注: B1.1 类光纤模场直径为 1 310 nm 波长下的值。 |      |                 |      |           |                 |           |     |           |     |                 |

5. 3. 4. 2 按 ITU-T G. 650 定义的截止波长可分为光缆截止波长  $\lambda_{cc}$ 、光纤截止波长  $\lambda_{c}$ 和跳线光缆截止波长  $\lambda_{cj}$ 。光缆使用长度不小于 22 m 时应符合表 7 p  $\lambda_{cc}$ 规定,使用长度小于 22 m 但不小于 2 m 时应符合  $\lambda_{cd}$ 规定,使用长度小于 2 m 时应符合  $\lambda_{cd}$ 规定,以防止运行时可能产生的模式噪声。

#### 表 7 单模光纤截止波长

nm

| 光纤类型 | $\lambda_{ m cc}$ | $\lambda_{ m c}$ | $\pmb{\lambda}_{\mathrm{cj}}$ |  |  |
|------|-------------------|------------------|-------------------------------|--|--|
| B1.1 | €1 260            | €1 250           | €1 250                        |  |  |

#### 5.3.4.3 单模光纤衰减系数和分级应符合表8规定。

#### 表 8 单模光纤衰减系数

| 光纤类型              |     | B1    | .1    |
|-------------------|-----|-------|-------|
| 使用波长,nm           |     | 1 310 | 1 550 |
| 衰减系数(最大值),dB/km   | 1 级 | 0.40  | 0.30  |
| 表视示数(取入道),GD/KIII | 2 级 | 0.50  | 0.40  |

- $5. \ 3. \ 4. \ 4$   $B1. \ 1$  类单模光纤的宏弯损耗,即光纤以  $37. \ 5$  mm 半径松绕 100 圈时,在  $1. \ 550$  nm 波长上测得的宏弯附加衰减,应不大于 0.5 dB。
- 5.3.4.5 B1.1 类单模光纤的色散特性为:
  - a) 零色散波长  $\lambda_0$  在 1 300 $\sim$ 1 324 nm 之间;
  - b) 零色散斜率  $S_0$  的最大值  $S_{0max}$ 为 0.093 ps/(nm² km);
  - c) 当零色散波长为  $\lambda_0$  和零色散斜率为  $S_0$  时,在 1 310 nm 区范围的色散系数  $D(\lambda)$ 计算式为:

$$D(\lambda) = \frac{S_0}{4} \left[ \lambda - \frac{\lambda_0^4}{\lambda^3} \right]$$

式中: λ为波长,nm。

- 5.4 机械性能
- 5.4.1 拉伸性能
- 5.4.1.1 光缆的允许拉伸力应符合表 9 规定。

表 9 光缆的允许拉伸力和压扁力

|                                                                                                                   |       | 允                  | 许拉伸力最小          | 允许压扁力最小值      |                       |                      |  |
|-------------------------------------------------------------------------------------------------------------------|-------|--------------------|-----------------|---------------|-----------------------|----------------------|--|
| 敷设方式                                                                                                              | 芯数    | $F_{ m ST}/{ m G}$ | F <sub>ST</sub> | $F_{ m LT}$ N | $F_{\rm SC}$ N/100 mm | $F_{ m LC}$ N/100 mm |  |
|                                                                                                                   | 单芯    |                    | 150             | 80            | 500                   | 100                  |  |
| <br> <br>  沿墙、顶、夹层、导管                                                                                             | 双芯    |                    | 300             | 160           | 1 000                 | 200                  |  |
| / / / / / / / / / / / / / / / / / / /                                                                             | 单带    | _                  | 200             | 80            | 1 000                 | 200                  |  |
|                                                                                                                   | 多芯(帯) | 0.8                | 600             | 200           | 1 000                 | 200                  |  |
| 竖井、竖直管道、地下室、隧道                                                                                                    | 多芯(帯) | 1.0                | 1 500           | 600           | 1 000                 | 300                  |  |
| 注: $F_{ m ST}$ 一短暂拉伸力; $F_{ m LT}$ 一长期拉伸力; $G$ 一 $1~{ m km}$ 光缆的质量, $N$ ; $F_{ m SC}$ 一短暂压扁力; $F_{ m LC}$ 一长期压扁力。 |       |                    |                 |               |                       |                      |  |

5. 4. 1. 2 在适用温度范围内光缆受到拉伸时,光纤在拉伸和弯曲共同作用下产生的应变及衰减变化和 光缆应变应符合表 10 规定。

#### 表 10 光纤的允许应变

| 受力情况         | 光纤的应变            | 光纤的衰减变化   | 光缆的应变   |
|--------------|------------------|-----------|---------|
| 短暂受力(例如安装期间) | 最大 0.30%和无明显残余应变 | 无明显残余附加衰减 | 无明显残余应变 |
| 长期受力(例如运行期间) | 最大 0.20%         | 无明显附加衰减   | _       |

#### 注

- 1 残余变化值指光缆承受的外部作用(例如拉伸力、压扁力、温度等)去除后可能有的变化量消除后的残留值。
- 2 Ala 和 Alb 类多模光纤附加衰减的监测波长为 1 300 nm, Bl. 1 类单模光纤为 1 550 nm。
- 3 衰减变化用传输功率监测法监测,其测量值的绝对值不超过 0.03 dB 时,判为无明显附加衰减,允许衰减有某数值变化时,其允许值已包括 0.03 dB 在内。
- 4 光纤拉伸应变用相移法监测,其测量值不大于 0.005%时,判为无明显应变,允许有应变时,其指标已包括 0.005%在内。光纤应变允许用其他方法测试,当有争议时,应以相移法测试结果为准。光缆拉伸应变用机械 方法或传感器方法监测,其测量值不大于 0.05%时,判为无明显应变。

#### 5.4.2 压扁性能

- 5.4.2.1 光缆的允许压扁力应符合表 9 规定。
- 5. 4. 2. 2 光缆在允许的短暂压扁力下光纤应不断裂,护套应不开裂,短暂压扁力去除后光纤应无明显 残余附加衰减,光缆在允许的长期压扁力下光纤应无明显附加衰减。
- 5.4.3 允许弯曲半径
- 5.4.3.1 光缆的允许最小弯曲半径应符合如下规定:
  - a) 动态弯曲(例如安装和移动使用期间)情况下为 20 D(圆形缆)或 20 H(扁形缆);
  - b) 静态弯曲(例如固定使用期间)情况下为 10 D(圆形缆)或 10 H(扁形缆)。
  - 注: D 为圆形光缆外径, H 为扁形光缆高度。扁形光缆应在扁平方向弯曲。
- 5.4.3.2 光缆在受到动态弯曲时光纤应不断裂,护套应不开裂,动态弯曲消除后光纤应无残余附加衰减,光缆在受到静态弯曲时光纤应无附加衰减,护套应不开裂。
- 5.5 环境性能
- 5.5.1 光纤衰减温度特性

光缆的适用温度范围及其单模光纤相对于 20℃时的允许温度附加衰减的分级应符合表 11 规定。

#### 表 11 光缆的适用温度和允许温度附加衰减

| 分级代号 | 分级代号 适用温度<br>C |       | 光纤允许附加衰减<br>dB/km |        |  |  |  |
|------|----------------|-------|-------------------|--------|--|--|--|
|      |                | Ala 类 | A1b 类             | B1.1 类 |  |  |  |
| С    | $-20 \sim +60$ | 不大-   | <b>五十</b> 工 0 20  |        |  |  |  |
| D    | $-5\sim +50$   | 1     | 不大于 0.20          |        |  |  |  |

注. 衰减变化用后向散射监测法监测,其测量值的绝对值不超过  $0.02~\mathrm{dB/km}$  时,判为无明显附加衰减,允许光纤衰减有变化时,其允许附加衰减值已包括  $0.02~\mathrm{dB/km}$  在内。

Ala 和 Alb 类多模光纤附加衰减的监测波长为 1 300 nm, Bl. 1 类单模光纤为 1 550 nm。

#### 5.5.2 燃烧性能

光缆的燃烧性能应符合如下规定:

- a) 阻燃性,建筑物主干光缆和水平光缆应能通过成束燃烧试验,
- b) 不延燃性:建筑群主干光缆和软线光缆应能通过单根垂直燃烧试验;
- c) 发烟浓度:光缆燃烧时产生的烟雾应使透光率不小于 50%。
- d) 腐蚀性:无卤阻燃光缆燃烧时产生气体的 pH 值应不小于 4.3,电导率应不大于  $10 \mu S/mm$ ;

#### 5.5.3 护套完整性

5. 5. 3. 1 当用电火花试验来检验光缆铝(或钢)—聚乙烯粘结护套中塑料套的完整性时,试验电压应符合表 12 规定。

#### 表 12 电火花试验电压

kV

| 试验类型       | 试验电压最低限值 | 试验电压 | 试验电压最高限值 |
|------------|----------|------|----------|
| 直流电压试验     | 12       | 9 t  | 25       |
| 交流电压试验     | 8        | 6 t  | 15       |
| \ <u>\</u> |          |      |          |

#### 注

- 1 t 为塑料套的标称厚度,mm。
- 2 交流试验电压系有效值。
- 5. 5. 3. 2 当用浸水试验来检验光缆铝(或钢)—聚乙烯粘结护套中塑料套的完整性时,在光缆浸水24~h 后塑料套的电气性能应符合:
  - a) 对地绝缘:在直流 500 V 下不低于 2 000 MΩ·km。
  - b) 耐电压强度:在直流 15 kV 下 2 min 不击穿。

#### 5.5.4 渗水性

当用渗水试验方法检验有阻水性能要求的光缆渗水性时,在  $20 \text{ C} \pm 5 \text{ C}$ 温度下,主干光缆用 1 m 高水头加到长度不大于 3 m 的光缆一端的全截面上,24 h 后在受试光缆段另一端上应无水渗出。

中 华 人 民 共 和 国 国 家 标 准 通 信 光 缆 系 列 第 3 部分:综合布线用室内光缆

GB/T 13993.3-2001

\*

中国标准出版社出版 北京复兴门外三里河北街16号

邮政编码:100045

电话:68523946 68517548

中国标准出版社秦皇岛印刷厂印刷新华书店北京发行所发行 各地新华书店经售

\*

开本 880×1230 1/16 印张 3/4 字数 15 千字 2002 年 3 月第一版 2002 年 3 月第一次印刷 印数 1-1 500

\*

书号: 155066・1-18220 定价 10.00 元 网址 www.bzcbs.com

> 版权专有 侵权必究 举报电话:(010)68533533



GB/T 13993. 3-2001